ترغب بنشر مسار تعليمي؟ اضغط هنا

We provide a lower bound on the degree of curves of the projective plane $mathbb{P}^2$ passing through the centers of a divisorial valuation $ u$ of $mathbb{P}^2$ with prescribed multiplicities, and an upper bound for the Seshadri-type constant of $ u$, $hat{mu}( u)$, constant that is crucial in the Nagata-type valuative conjecture. We also give some results related to the bounded negativity conjecture concerning those rational surfaces having the projective plane as a relatively minimal model.
We study foliations $mathcal{F}$ on Hirzebruch surfaces $S_delta$ and prove that, similarly to those on the projective plane, any $mathcal{F}$ can be represented by a bi-homogeneous polynomial affine $1$-form. In case $mathcal{F}$ has isolated singul arities, we show that, for $ delta=1 $, the singular scheme of $mathcal{F}$ does determine the foliation, with some exceptions that we describe, as is the case of foliations in the projective plane. For $delta eq 1$, we prove that the singular scheme of $mathcal{F}$ does not determine the foliation. However we prove that, in most cases, two foliations $mathcal{F}$ and $mathcal{F}$ given by sections $s$ and $s$ have the same singular scheme if and only if $s=Phi(s)$, for some global endomorphism $Phi $ of the tangent bundle of $S_delta$.
Non-positive at infinity valuations are a class of real plane valuations which have a nice geometrical behavior. They are divided in three types. We study the dual graphs of non-positive at infinity valuations and give an algorithm for obtaining them . Moreover we compare these graphs attending the type of their corresponding valuation.
We present new quantum codes with good parameters which are constructed from self-orthogonal algebraic geometry codes. Our method permits a wide class of curves to be used in the formation of these codes, which greatly extends the class of a previous paper due to Munuera, Tenorio and Torres. These results demonstrate that there is a lot more scope for constructing self-orthogonal AG codes than was previously known.
We consider flags $E_bullet={Xsupset Esupset {q}}$, where $E$ is an exceptional divisor defining a non-positive at infinity divisorial valuation $ u_E$ of a Hirzebruch surface $mathbb{F}_delta$ and $X$ the surface given by $ u_E,$ and determine an an alogue of the Seshadri constant for pairs $( u_E,D)$, $D$ being a big divisor on $mathbb{F}_delta$. The main result is an explicit computation of the vertices of the Newton-Okounkov bodies of pairs $(E_bullet,D)$ as above, showing that they are quadrilaterals or triangles and distinguishing one case from another.
We consider rational surfaces $Z$ defined by divisorial valuations $ u$ of Hirzebruch surfaces. We introduce the concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit nice local and global equi valent conditions. In particular we prove that, when $ u$ is non-positive at infinity, the extremal rays of the cone of curves of $Z$ can be explicitly given.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا