ﻻ يوجد ملخص باللغة العربية
We consider rational surfaces $Z$ defined by divisorial valuations $ u$ of Hirzebruch surfaces. We introduce the concepts of non-positivity and negativity at infinity for these valuations and prove that these concepts admit nice local and global equivalent conditions. In particular we prove that, when $ u$ is non-positive at infinity, the extremal rays of the cone of curves of $Z$ can be explicitly given.
We consider flags $E_bullet={Xsupset Esupset {q}}$, where $E$ is an exceptional divisor defining a non-positive at infinity divisorial valuation $ u_E$ of a Hirzebruch surface $mathbb{F}_delta$ and $X$ the surface given by $ u_E,$ and determine an an
Non-positive at infinity valuations are a class of real plane valuations which have a nice geometrical behavior. They are divided in three types. We study the dual graphs of non-positive at infinity valuations and give an algorithm for obtaining them
We study foliations $mathcal{F}$ on Hirzebruch surfaces $S_delta$ and prove that, similarly to those on the projective plane, any $mathcal{F}$ can be represented by a bi-homogeneous polynomial affine $1$-form. In case $mathcal{F}$ has isolated singul
We give a notion of ordinary Enriques surfaces and their canonical lifts in any positive characteristic, and we prove Torelli-type results for this class of Enriques surfaces.
We prove that a twisted Enriques (respectively, untwisted bielliptic) surface over an algebraically closed field of positive characteristic at least 3 (respectively, at least 5) has no non-trivial Fourier-Mukai partners.