ترغب بنشر مسار تعليمي؟ اضغط هنا

On the degree of curves with prescribed multiplicities and bounded negativity

83   0   0.0 ( 0 )
 نشر من قبل Carlos-Jes\\'us Moreno-\\'Avila
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We provide a lower bound on the degree of curves of the projective plane $mathbb{P}^2$ passing through the centers of a divisorial valuation $ u$ of $mathbb{P}^2$ with prescribed multiplicities, and an upper bound for the Seshadri-type constant of $ u$, $hat{mu}( u)$, constant that is crucial in the Nagata-type valuative conjecture. We also give some results related to the bounded negativity conjecture concerning those rational surfaces having the projective plane as a relatively minimal model.



قيم البحث

اقرأ أيضاً

There are no known failures of Bounded Negativity in characteristic 0. In the light of recent work showing the Bounded Negativity Conjecture fails in positive characteristics for rational surfaces, we propose new characteristic free conjectures as a replacement. We also develop bounds on numerical characteristics of curves constraining their negativity. For example, we show that the $H$-constant of a rational curve $C$ with at most $9$ singular points satisfies $H(C)>-2$ regardless of the characteristic.
Shimura curves on Shimura surfaces have been a candidate for counterexamples to the bounded negativity conjecture. We prove that they do not serve this purpose: there are only finitely many whose self-intersection number lies below a given bound. P reviously, this result has been shown in [BHK+13] for compact Hilbert modular surfaces using the Bogomolov-Miyaoka-Yau inequality. Our approach uses equidistribution and works uniformly for all Shimura surfaces.
Let G be a finite group, and $g geq 2$. We study the locus of genus g curves that admit a G-action of given type, and inclusions between such loci. We use this to study the locus of genus g curves with prescribed automorphism group G. We completely c lassify these loci for g=3 (including equations for the corresponding curves), and for $g leq 10$ we classify those loci corresponding to large G.
We report on the problem of the existence of complex and real algebraic curves in the plane with prescribed singularities up to analytic and topological equivalence. The question is whether, for a given positive integer $d$ and a finite number of giv en analytic or topological singularity types, there exist a plane (irreducible) curve of degree $d$ having singular points of the given type as its only singularities. The set of all such curves is a quasi-projective variety, which we call an equisingular family (ESF). We describe, in terms of numerical invariants of the curves and their singularities, the state of the art concerning necessary and sufficient conditions for the non-emptiness and $T$-smoothness (i.e., smooth of expected dimension) of the corresponding ESF. The considered singularities can be arbitrary, but we spend special attention to plane curves with nodes and cusps, the most studied case, where still no complete answer is known in general. An important result is, however, that the necessary and the sufficient conditions show the same asymptotics for $T$-smooth equisingular families if the degree goes to infinity.
95 - Joachim Kock 2001
This note pursues the techniques of modified psi classes on the stack of stable maps (cf. [Graber-Kock-Pandharipande]) to give concise solutions to the characteristic number problem of rational curves in P^2 or P^1 x P^1 with a cusp or a prescribed t riple contact. The classes of such loci are computed in terms of modified psi classes, diagonal classes, and certain codimension-2 boundary classes. Via topological recursions the generating functions for the numbers can then be expressed in terms of the usual characteristic number potentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا