ترغب بنشر مسار تعليمي؟ اضغط هنا

We use the non-equilibrium statistical field theory for classical particles recently developed by Mazenko and Das and Mazenko, together with the free generating functional for particles initially correlated in phase space derived in Bartelmann et al. to study the impact of initial correlations on the equation of state of real gases. We first show that we can reproduce the well known van der Waals equation of state for uncorrelated initial conditions using this approach. We then impose correlated initial conditions and study their qualitative and quantitative effect on the equation of state of a van der Waals gas. The correlations impose a significant correction to the pressure of an ideal gas which is an order of magnitude larger than the correction due to particle interactions.
Recently Mazenko and Das and Mazenko introduced a non-equilibrium field theoretical approach to describe the statistical properties of a classical particle ensemble starting from the microscopic equations of motion of each individual particle. We use this theory to investigate the transition from those microscopic degrees of freedom to the evolution equations of the macroscopic observables of the ensemble. For the free theory, we recover the continuity and Jeans equations of a collisionless gas. For a theory containing two-particle interactions in a canonical perturbation series, we find the macroscopic evolution equations to be described by the Born-Bogoliubov-Green-Kirkwood-Yvon hierarchy (BBGKY hierarchy) with a truncation criterion depending on the order in perturbation theory. This establishes a direct link between the classical and the field-theoretical approaches to kinetic theory that might serve as a starting point to investigate kinetic theory beyond the classical limits.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا