ترغب بنشر مسار تعليمي؟ اضغط هنا

356 - F. Schafers 2013
Reflection of light from surfaces is a very common, but complex phenomenon not only in science and technology, but in every day life. The underlying basic optical principles have been developed within the last five centuries using visible light avail able from the sun or other laboratory light sources. X-rays were detected in 1895, and the full potential of soft- and hard-x ray radiation as a probe for the electronic and geometric properties of matter, for material analysis and its characterisation is available only since the advent of synchrotron radiation sources some 50 years ago. On the other hand high-brilliance and high power synchrotron radiation of present-days 3rd and 4th generation light sources is not always beneficial. Highenergy machines and accelerator-based light sources can suffer from a serious performance drop or limitations due to interaction of the synchrotron radiation with the accelerator walls, thus producing clouds of photoelectrons (e-cloud) which in turn interact with the accelerated beam. Thus the suitable choice of accelerator materials and their surface coating, which determines the x-ray optical behaviour is of utmost importance to achieve ultimate emittance. Basic optical principles and examples on reflectivity for selected materials are given here.
289 - C. Timm , F. Schafer , 2001
In a recent Letter, Berciu and Bhatt have presented a mean-field theory of ferromagnetism in III-V semiconductors doped with manganese, starting from an impurity band model. We show that this approach gives an unphysically broad impurity band and is thus not appropriate for (Ga,Mn)As containing 1-5% Mn. We also point out a microscopically unmotivated sign change in the overlap integrals in the Letter. Without this sign change, stable ferromagnetism is not obtained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا