ترغب بنشر مسار تعليمي؟ اضغط هنا

A Kondo lattice of strongly interacting f-electrons immersed in a sea of conduction electrons remains one of the unsolved problems in condensed matter physics. The problem concerns localized f-electrons at high temperatures which evolve into hybridiz ed heavy quasi-particles at low temperatures, resulting in the appearance of a hybridization gap. Here, we unveil the presence of hybridization gap in Ce2RhIn8 and find the surprising result that the temperature range at which this gap becomes visible by angle-resolved photoemission spectroscopy is nearly an order of magnitude lower than the temperature range where the magnetic scattering becomes larger than the phonon scattering, as observed in the electrical resistivity measurements. Furthermore the spectral gap appears at temperature scales nearly an order of magnitude higher than the coherent temperature. We further show that when replacing In by Cd to tune the local density of states at the Ce3+ site, there is a strong reduction of the hybridization strength, which in turn leads to the suppression of the hybridization gap at low temperatures.
V2O3 is an archetypal system for the study of correlation induced, Mott-Hubbard metal-insulator transitions. Despite decades of extensive investigations, the accurate description of its electronic properties remains an open problem in the physics of strongly correlated materials, also because of the lack of detailed experimental data on its electronic structure over the whole phase diagram. We present here a high resolution X-ray absorption spectroscopy study at the V K-edge of (V(1-x)Crx)2O3 to probe its electronic structure as a function of temperature, doping and pressure, providing an accurate picture of the electronic changes over the whole phase diagram. We also discuss the relevance of the parallel evolution of the lattice parameters, determined with X-ray diffraction. This allows us to draw two conclusions of general interest: first, the transition under pressure presents peculiar properties, related to a more continuous evolution of the lattice and electronic structure; second, the lattice mismatch is a good parameter describing the strength of the first order transition, and is consequently related to the tendency of the system towards the coexistence of different phases. Our results show that the evolution of the electronic structure while approaching a phase transition, and not only while crossing it, is also a key element to unveil the underlying physical mechanisms of Mott materials .
105 - F. Rodolakis 2010
The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre K-edge. Contrary to what has been taken for granted so far, the metallic phase reached under pressure is shown to differ from the one obtained by changing doping or temperature. Using a novel computational scheme, we relate this effect to the role and occupancy of the a1g orbitals. This finding unveils the inequivalence of different routes across the Mott transition in V2O3
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا