ﻻ يوجد ملخص باللغة العربية
V2O3 is an archetypal system for the study of correlation induced, Mott-Hubbard metal-insulator transitions. Despite decades of extensive investigations, the accurate description of its electronic properties remains an open problem in the physics of strongly correlated materials, also because of the lack of detailed experimental data on its electronic structure over the whole phase diagram. We present here a high resolution X-ray absorption spectroscopy study at the V K-edge of (V(1-x)Crx)2O3 to probe its electronic structure as a function of temperature, doping and pressure, providing an accurate picture of the electronic changes over the whole phase diagram. We also discuss the relevance of the parallel evolution of the lattice parameters, determined with X-ray diffraction. This allows us to draw two conclusions of general interest: first, the transition under pressure presents peculiar properties, related to a more continuous evolution of the lattice and electronic structure; second, the lattice mismatch is a good parameter describing the strength of the first order transition, and is consequently related to the tendency of the system towards the coexistence of different phases. Our results show that the evolution of the electronic structure while approaching a phase transition, and not only while crossing it, is also a key element to unveil the underlying physical mechanisms of Mott materials .
We have studied the electronic structure of Li$_{1+x}$[Mn$_{0.5}$Ni$_{0.5}$]$_{1-x}$O$_2$ ($x$ = 0.00 and 0.05), one of the promising cathode materials for Li ion battery, by means of x-ray photoemission and absorption spectroscopy. The results show
The optical conductivity $sigma_{1}(omega)$ of Eu$_{1-x}$Ca$_{x}$B$_{6}$ has been obtained from reflectivity and ellipsometry measurements for series of compositions, $0leq xleq 1$. The interband part of $sigma_{1}(omega) $ shifts continuously to hig
GdNi is a ferrimagnetic material with a Curie temperature Tc = 69 K which exhibits a large magnetocaloric effect, making it useful for magnetic refrigerator applications. We investigate the electronic structure of GdNi by carrying out x-ray absorptio
We report on the local electronic structure of Fe impurities in MgO thin films. Using soft x-ray absorption spectroscopy (XAS) we verified that the Fe impurities are all in the 2+ valence state. The fine details in the line shape of the Fe $L_{2,3}$
The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre K-edge. Contrary to what has been taken