ﻻ يوجد ملخص باللغة العربية
The changes in the electronic structure of V2O3 across the metal-insulator transition induced by temperature, doping and pressure are identified using high resolution x-ray absorption spectroscopy at the V pre K-edge. Contrary to what has been taken for granted so far, the metallic phase reached under pressure is shown to differ from the one obtained by changing doping or temperature. Using a novel computational scheme, we relate this effect to the role and occupancy of the a1g orbitals. This finding unveils the inequivalence of different routes across the Mott transition in V2O3
V2O3 is the prototype system for the Mott transition, one of the most fundamental phenomena of electronic correlation. Temperature, doping or pressure induce a metal to insulator transition (MIT) between a paramagnetic metal (PM) and a paramagnetic i
We have performed high-resolution hard X-ray photoemission spectroscopy for the metal-insulator transition (MIT) system (V(1-x)Cr(x))2O3 in the paramagnetic metal, paramagnetic insulator and antiferromagentic insulator phases. The quality of the spec
Despite decades of experimental and theoretical efforts, the origin of metal-insulator transitions (MIT) in strongly-correlated materials is one of the main longstanding problems in condensed matter physics. An archetypal example is V2O3, where elect
The ultrafast response of the prototype Mott-Hubbard system (V1-xCrx)2O3 was systematically studied with fs pump-probe reflectivity, allowing us to clearly identify the effects of the metal-insulator transition on the transient response. The isostruc
Electronic nematicity in iron pnictide materials is coupled to both the lattice and the conducting electrons, which allows both structural and transport observables to probe nematic fluctuations and the order parameter. Here we combine simultaneous t