ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - F. Minato , K. Hagino 2013
Applying the sum rule approach, we investigate the energy of a soft dipole motion in $Lambda$ hypernuclei, which results from a dipole oscillation of a $Lambda$ hyperon against the core nucleus. To this end, we systematically study single-$Lambda$ hy pernuclei, from $^{16}_{;,Lambda}$O to $^{208}_{;;;Lambda}$Pb, for which the ground state wave function is obtained in the framework of Hartree-Fock method with several Skyrme-type $Lambda N$ interactions. Our results indicate that the excitation energy of the soft dipole $Lambda$ mode, $E_{sdLambda}$, decreases as the mass number increases. We find that the excitation energy is well parametrized as $E_{sdLambda}=26.6A^{-1/3}+11.2A^{-2/3}$ MeV as a function of mass number $A$.
73 - F. Minato , C.L. Bai 2013
Effect of the tensor force on $beta$?-decay is studied in the framework of the proton-neutron random-phase-approximation (RPA) with the Skyrme force. The investigation is performed for even-even semi-magic and magic nuclei, $^{34}$Si, $^{68}$, $^{78} $Ni and $^{132}$Sn. The tensor correlation induces strong impact on low-lying Gamow-Teller state. In particular, it improves the ?$beta$-decay half-lives. $Q$ and $ft$ values are also investigated and compared with experimental data.
73 - K. Hagino , J. M. Yao , F. Minato 2012
We discuss low-lying collective excitations of $Lambda$ hypernuclei using the self-consistent mean-field approaches. We first discuss the deformation properties of $Lambda$ hypernuclei in the $sd$-shell region. Based on the relativistic mean-field (R MF) approach, we show that the oblate deformation for $^{28}$Si nucleus may disappear when a $Lambda$ particle is added to this nucleus. We then discuss the rotational excitations of $^{25}_{Lambda}$Mg nucleus using the three-dimensional potential energy surface in the deformation plane obtained with the Skyrme-Hartree-Fock method. The deformation of $^{25}_{Lambda}$Mg nucleus is predicted to be slightly reduced due to an addition of $Lambda$ particle. We demonstrate that this leads to a reduction of electromagnetic transition probability, $B(E2)$, in the ground state rotational band. We also present an application of random phase approximation (RPA) to hypernuclei, and show that a new dipole mode, which we call a soft dipole $Lambda$ mode, appears in hypernuclei, which can be interpreted as an oscillation of $Lambda$ particle against the core nucleus.
112 - F. Minato , K. Hagino 2011
Using the Hartree-Fock plus random-phase-approximation (HF+RPA), we study the impurity effect of $Lambda$ hyperon on the collective vibrational excitations of double-$Lambda$ hypernuclei. To this end, we employ a Skyrme-type $Lambda N$ and $LambdaLam bda$ interactions for the HF calculations, and the residual interactions for RPA derived with the same interactions. We find that inclusion of two $Lambda$ hyperons in $^{16}$O shifts the energy of the collective states towards higher energies. In particular, the energy of the giant monopole resonance of $^{,,18}_{LambdaLambda}$O, as well as that of $^{210}_{LambdaLambda}$Pb, becomes larger. This implies that the effective incompressibility modulus increases due to the impurity effect of $Lambda$ particle, if the $beta$-stability condition is not imposed.
81 - K. Hagino , F. Minato 2009
We investigate the applicability of finite temperature random phase approximation (RPA) using a solvable Lipkin model. We show that the finite temperature RPA reproduces reasonably well the temperature dependence of total strength, both for the posit ive energy (i.e., the excitation) and the negative energy (i.e., the de-excitation) parts. This is the case even at very low temperatures, which may be relevant to astrophysical purposes.
137 - F. Minato , S. Chiba , K. Hagino 2009
Fission-related phenomena of heavy $Lambda$ hypernuclei are discussed with the constraint Skyrme-Hartree-Fock+BCS (SHF+BCS) method, in which a similar Skyrme-type interaction is employed also for the interaction between a $Lambda$ particle and a nucl eon. Assuming that the $Lambda$ particle adiabatically follows the fission motion, we discuss the fission barrier height of $^{239}_{Lambda}$U. We find that the fission barrier height increases slightly when the $Lambda$ particle occupies the lowest level. In this case, the $Lambda$ particle is always attached to the heavier fission fragment. This indicates that one may produce heavy neutron-rich $Lambda$ hypernuclei through fission, whose weak decay is helpful for the nuclear transmutation of long-lived fission products. We also discuss cases where the $Lambda$ particle occupies a higher single-particle level.
106 - F. Minato , K. Hagino 2008
We discuss the sensitivity of fission barrier for heavy neutron-rich nuclei to fission paths in the two dimensional neutron-proton quadrupole plane. To this end, we use the constrained Skyrme-Hartree-Fock + BCS method, and examine the difference of f ission barriers obtained with three constraining operators, that is, the neutron, proton, and mass quadrupole operators. We investigate $^{220}$U, $^{236}$U, and $^{266}$U, %from proton-rich to neutron-rich uranium isotopes, that is relevant to r-process nucleosynthesis. We find that the fission barrier heights are almost the same among the three constraining operators even for neutron-rich nuclei, indicating that the usual way to calculate fission barriers with the mass quadrupole operator is well justified. We also discuss the difference between proton and neutron deformation parameters along the fission paths.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا