ﻻ يوجد ملخص باللغة العربية
Applying the sum rule approach, we investigate the energy of a soft dipole motion in $Lambda$ hypernuclei, which results from a dipole oscillation of a $Lambda$ hyperon against the core nucleus. To this end, we systematically study single-$Lambda$ hypernuclei, from $^{16}_{;,Lambda}$O to $^{208}_{;;;Lambda}$Pb, for which the ground state wave function is obtained in the framework of Hartree-Fock method with several Skyrme-type $Lambda N$ interactions. Our results indicate that the excitation energy of the soft dipole $Lambda$ mode, $E_{sdLambda}$, decreases as the mass number increases. We find that the excitation energy is well parametrized as $E_{sdLambda}=26.6A^{-1/3}+11.2A^{-2/3}$ MeV as a function of mass number $A$.
We calculate the $Lambda Lambda to YN$ transition rate of ${^{phantom{Lambda}6}_{Lambda Lambda}}$He by the hybrid picture, the $pi$ and $K$ exchanges plus the direct quark processes. It is found that the hyperon-induced decay is weaker than the nucle
The nonmesonic weak decay of $Lambda$ hypernuclei is studied within a microscopic diagrammatic approach which is extended to include the three--nucleon induced mechanism. We adopt a nuclear matter formalism which, through the local density approximat
The non--mesonic weak decay of double--$Lambda$ hypernuclei is studied within a microscopic diagrammatic approach. Besides the nucleon--induced mechanism, $Lambda Nto nN$, widely studied in single--$Lambda$ hypernuclei, additional hyperon--induced me
This research article is a follow up of earlier work by M. Ikram et al., reported in International Journal of Modern Physics E {bf{25}}, 1650103 (2016) wherein we searched for $Lambda$ magic numbers in experimentally confirmed doubly magic nucleonic
By using the 1H(6Li,6Be)n charge-exchange reaction, continuum states in 6Be were populated up to E_t=16 MeV, E_t being the 6Be energy above its three-body decay threshold. In kinematically complete measurements performed by detecting alpha+p+p coinci