ﻻ يوجد ملخص باللغة العربية
Fission-related phenomena of heavy $Lambda$ hypernuclei are discussed with the constraint Skyrme-Hartree-Fock+BCS (SHF+BCS) method, in which a similar Skyrme-type interaction is employed also for the interaction between a $Lambda$ particle and a nucleon. Assuming that the $Lambda$ particle adiabatically follows the fission motion, we discuss the fission barrier height of $^{239}_{Lambda}$U. We find that the fission barrier height increases slightly when the $Lambda$ particle occupies the lowest level. In this case, the $Lambda$ particle is always attached to the heavier fission fragment. This indicates that one may produce heavy neutron-rich $Lambda$ hypernuclei through fission, whose weak decay is helpful for the nuclear transmutation of long-lived fission products. We also discuss cases where the $Lambda$ particle occupies a higher single-particle level.
The properties of $Xi^-$ hypernuclei are studied systematically using a two-dimensional Skyrme-Hartree-Fock approach combined with three different $Xi N$ Skyrme forces fitted to reproduce the existing data. We explore the impurity effect of a single
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring d
Background: Nuclear fission is a complex large-amplitude collective decay mode in heavy nuclei. Microscopic density functional studies of fission have previously concentrated on adiabatic approaches based on constrained static calculations ignoring d
In this work, we systematically study the two-proton($2p$) radioactivity half-lives using the two-potential approach while the nuclear potential is obtained by using Skyrme-Hartree-Fock approach with the Skyrme effective interaction of {SLy8}. For tr
We investigate the role of odd-odd (with respect to time inversion) couplings in the Skyrme force on collisions of light nuclei, employing a fully three-dimensional numerical treatment without any symmetry restrictions and with modern Skyrme function