ترغب بنشر مسار تعليمي؟ اضغط هنا

108 - S. Courtin , A. Goasduff , F. Haas 2013
Electromagnetic transitions from deformed structures based on $alpha$ configurations or on heavier clusters are discussed, drawing the link between multiparticle-multihole excited bands and cluster structures. Enhanced E2 and E1 transitions are revie wed in the light nuclei, $^8$Be, $^{10}$Be, $^{12}$C, $^{16}$O, $^{18}$O and heavier ones like $^{212}$Po. Connections between cluster structures and superdeformed configurations in $^{36}$Ar and $^{40}$Ca are discussed. What the cluster states based on heavier substructures like $^{12}$C and $^{16}$O are concerned, recent results on the resonant radiative capture reaction $^{12}$C($^{16}$O,$gamma$)$^{28}$Si are presented, in particular the strong decay mode involving the feeding of low-lying $^{28}$Si 1$^+$ and 2$^+$ T=1 states by enhanced M1 isovector transitions.
We demonstrate the existence of a novel breather mode in the self-consistent electron dynamics of a semiconductor quantum well. A non-perturbative variational method based on quantum hydrodynamics is used to determine the salient features of the elec tron breather mode. Numerical simulations of the time-dependent Wigner-Poisson or Hartree equations are shown to be in excellent agreement with our analytical results. For asymmetric quantum wells, a signature of the breather mode is observed in the dipole response, which can be detected by standard optical means.
107 - S. Courtin , A. Goasduff , F. Haas 2012
The 12C+16O resonant radiative capture reaction has been studied at 5 bombarding energies between Elab = 15.4 and 21.4 MeV, around the Coulomb barrier, at the Triumf laboratory (Vancouver, Canada) using the Dragon 0{deg} spectrometer and the associat ed BGO array. The most remarquable result is the previously unobserved decay path through 28Si doorway states of energies around 12 MeV leading to the measurement of new capture cross-sections. The feeding of specific, deformed states in 28Si from the resonances is discussed, as well as the selective feeding of 1^+ T=1 states around 11 MeV.
The quasilinear theory of the Wigner-Poisson system in one spatial dimension is examined. Conservation laws and properties of the stationary solutions are determined. Quantum effects are shown to manifest themselves in transient periodic oscillations of the averaged Wigner function in velocity space. The quantum quasilinear theory is checked against numerical simulations of the bump-on-tail and the two-stream instabilities. The predicted wavelength of the oscillations in velocity space agrees well with the numerical results.
We present an investigation for the generation of intense magnetic fields in dense plasmas with an anisotropic electron Fermi-Dirac distribution. For this purpose, we use a new linear dispersion relation for transverse waves in the Wigner-Maxwell den se quantum plasma system. Numerical analysis of the dispersion relation reveals the scaling of the growth rate as a function of the Fermi energy and the temperature anisotropy. The nonlinear saturation level of the magnetic fields is found through fully kinetic simulations, which indicates that the final amplitudes of the magnetic fields are proportional to the linear growth rate of the instability. The present results are important for understanding the origin of intense magnetic fields in dense Fermionic plasmas, such as those in the next generation intense laser-solid density plasma experiments.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا