ﻻ يوجد ملخص باللغة العربية
We demonstrate the existence of a novel breather mode in the self-consistent electron dynamics of a semiconductor quantum well. A non-perturbative variational method based on quantum hydrodynamics is used to determine the salient features of the electron breather mode. Numerical simulations of the time-dependent Wigner-Poisson or Hartree equations are shown to be in excellent agreement with our analytical results. For asymmetric quantum wells, a signature of the breather mode is observed in the dipole response, which can be detected by standard optical means.
The optical response of nonparabolic quantum wells is dominated by a strong peak at the plasmon frequency. When the electrons reach the anharmonic regions, resonant absorption becomes inefficient. This limitation is overcome by using a chirped laser
The dependence of the excitonic two-photon absorption on the quantum correlations (entanglement) of exciting biphotons by a semiconductor quantum well is studied. We show that entangled photon absorption can display very unusual features depending on
A two-dimensional (2D) electron gas formed in a modulation-doped GaAs/AlGaAs single quantum well undergoes a first-order transition when the first excited subband is occupied with electrons, as the Fermi level is tuned into resonance with the excited
We simulate the time-dependent coherent dynamics of a spatially indirect exciton (an electron-hole pair with the two particles confined in different layers) in a GaAs coupled quantum well system. We use a unitary wave-packet propagation method taking
We use temporally resolved intensity cross-correlation measurements to identify the biexciton-exciton radiative cascades in a negatively charged QD. The polarization sensitive correlation measurements show unambiguously that the excited two electron