ترغب بنشر مسار تعليمي؟ اضغط هنا

We perform the scanning tunneling spectroscopy based superconductor-vacuum-superconductor analogue to the seminal McMillan and Rowell superconductor-insulator-superconductor device study of phonons in the archetypal elemental superconductor Pb [W. L. McMillan and J. M. Rowell, Phys. Rev. Lett. 14, 108 (1965)]. We invert this spectroscopic data utilizing strong-coupling Eliashberg theory to obtain a local {alpha}^2F({omega}) and find broad underlying agreement with the pioneering results, highlighted by previously unobserved electron-hole asymmetries and new fine structure which we discuss in terms of both conventional and unconventional superconducting bosonics.
High-temperature (high-Tc) superconductivity in the copper oxides arises from electron or hole doping of their antiferromagnetic (AF) insulating parent compounds. The evolution of the AF phase with doping and its spatial coexistence with superconduct ivity are governed by the nature of charge and spin correlations and provide clues to the mechanism of high-Tc superconductivity. Here we use a combined neutron scattering and scanning tunneling spectroscopy (STS) to study the Tc evolution of electron-doped superconducting Pr0.88LaCe0.12CuO4-delta obtained through the oxygen annealing process. We find that spin excitations detected by neutron scattering have two distinct modes that evolve with Tc in a remarkably similar fashion to the electron tunneling modes in STS. These results demonstrate that antiferromagnetism and superconductivity compete locally and coexist spatially on nanometer length scales, and the dominant electron-boson coupling at low energies originates from the electron-spin excitations.
The parent compounds of the recently discovered iron-arsenic (pnictide) high temperature superconductors transition into an intriguing spin density wave (SDW) phase at low temperatures. Progress in understanding this SDW state has been complicated by a complex band structure and by the fact that the spin, electronic, and structural degrees of freedom are closely intertwined in these compounds. Scanning tunneling microscopy (STM) measurements have added to this complexity by revealing different topographies with no consensus on the surface structure. In this paper, we use a combination of high-resolution STM imaging and spectroscopy, and low energy electron diffraction (LEED) to determine the atomic and electronic structure of the parent pnictide SrFe2As2. Our data present a compelling picture of the existence of two coexisting homotopic structures on the surface. Based on this, we construct a simple model for the surface, which offers an explanation of the two classes of topographies seen by STM. STM spectroscopy shows that while the high energy density of states (DOS) profile is consistent with the Fe 3d and As 4p-electrons predicted by LDA it is in better agreement with calculations that include electron correlations beyond LDA. Importantly, we find a gap of ~15 meV in the low energy density of states on both structures which may be linked with the SDW or the observed surface reconstruction.
The superconducting phase of the high-Tc cuprates has been thought to be described by a single d-wave pairing order parameter. Recently, there has been growing evidence suggesting that another form of order, possibly inherited from the pseudogap phas e above Tc, may coexist with superconductivity in the underdoped regime. Through a combined study of scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we report the observation of two distinct gaps (a small-gap and a large-gap) that coexist both in real space and in the anti-nodal region of momentum space in the superconducting phase of Bi2Sr2-xLaxCuO6+delta. We show that the small-gap is associated with superconductivity. The large-gap persists to temperatures above the transition temperature Tc and is found to be linked to short-range charge ordering. Remarkably, we find a strong, short-ranged correlation between the local small- and large- gap magnitudes suggesting that the superconductivity and charge ordering are affected by similar physical processes.
Despite recent advances in understanding high-transition-temperature (high-T c) superconductors, there is no consensus on the origin of the superconducting glue: that is, the mediator that binds electrons into superconducting pairs. The main contende rs are lattice vibrations (phonons) and spin-excitations with the additional possibility of pairing without mediators. In conventional superconductors, phonon-mediated pairing was unequivocally established by data from tunnelling experiments. Proponents of phonons as the high-T c glue were therefore encouraged by the recent scanning tunnelling microscopy experiments on hole-doped Bi2Sr2CaCu2O8-delta (BSCCO) that reveal an oxygen lattice vibrational mode whose energy is anticorrelated with the superconducting gap energy scale. Here we report high-resolution scanning tunnelling microscopy measurements of the electron-doped high-T c superconductor Pr0.88LaCe0.12CuO4 (PLCCO) (T c = 24 K) that reveal a bosonic excitation (mode) at energies of 10.5 plus/minus 2.5 meV. This energy is consistent with both spin-excitations in PLCCO measured by inelastic neutron scattering (resonance mode) and a low-energy acoustic phonon mode, but differs substantially from the oxygen vibrational mode identified in BSCCO. Our analysis of the variation of the local mode energy and intensity with the local gap energy scale indicates an electronic origin of the mode consistent with spin-excitations rather than phonons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا