ترغب بنشر مسار تعليمي؟ اضغط هنا

We present a deep machine learning algorithm to extract crystal field (CF) Stevens parameters from thermodynamic data of rare-earth magnetic materials. The algorithm employs a two-dimensional convolutional neural network (CNN) that is trained on magn etization, magnetic susceptibility and specific heat data that is calculated theoretically within the single-ion approximation and further processed using a standard wavelet transformation. We apply the method to crystal fields of cubic, hexagonal and tetragonal symmetry and for both integer and half-integer total angular momentum values $J$ of the ground state multiplet. We evaluate its performance on both theoretically generated synthetic and previously published experimental data on CeAgSb$_2$, PrAgSb$_2$ and PrMg$_2$Cu$_9$, and find that it can reliably and accurately extract the CF parameters for all site symmetries and values of $J$ considered. This demonstrates that CNNs provide an unbiased approach to extracting CF parameters that avoids tedious multi-parameter fitting procedures.
127 - F. Bertrand , G. Starke 2020
A posteriori error estimates are constructed for the three-field variational formulation of the Biot problem involving the displacements, the total pressure and the fluid pressure. The discretization under focus is the H1({Omega})-conforming Taylor-H ood finite element combination, consisting of polynomial degrees k + 1 for the displacements and the fluid pressure and k for the total pressure. An a posteriori error estimator is derived on the basis of H(div)-conforming reconstructions of the stress and flux approximations. The symmetry of the reconstructed stress is allowed to be satisfied only weakly. The reconstructions can be performed locally on a set of vertex patches and lead to a guaranteed upper bound for the error with a constant that depends only on local constants associated with the patches and thus on the shape regularity of the triangulation. Particular emphasis is given to nearly incompressible materials and the error estimates hold uniformly in the incompressible limit. Numerical results on the L-shaped domain confirm the theory and the suitable use of the error estimator in adaptive strategies.
Ground state eigenvectors of the reduced Bardeen-Cooper-Schrieffer Hamiltonian are employed as a wavefunction ansatz to model strong electron correlation in quantum chemistry. This wavefunction is a product of weakly-interacting pairs of electrons. W hile other geminal wavefunctions may only be employed in a projected Schr{o}dinger equation, the present approach may be solved variationally with polynomial cost. The resulting wavefunctions are used to compute expectation values of Coulomb Hamiltionans and we present results for atoms and dissociation curves which are in agreement with doubly-occupied configuration interaction (DOCI) data. The present approach will serve as the starting point for a many-body theory of pairs, much as Hartree-Fock is the starting point for weakly-correlated electrons.
We develop a resource efficient step-merged quantum imaginary time evolution approach (smQITE) to solve for the ground state of a Hamiltonian on quantum computers. This heuristic method features a fixed shallow quantum circuit depth along the state e volution path. We use this algorithm to determine binding energy curves of a set of molecules, including H$_2$, H$_4$, H$_6$, LiH, HF, H$_2$O and BeH$_2$, and find highly accurate results. The required quantum resources of smQITE calculations can be further reduced by adopting the circuit form of the variational quantum eigensolver (VQE) technique, such as the unitary coupled cluster ansatz. We demonstrate that smQITE achieves a similar computational accuracy as VQE at the same fixed-circuit ansatz, without requiring a generally complicated high-dimensional non-convex optimization. Finally, smQITE calculations are carried out on Rigetti quantum processing units (QPUs), demonstrating that the approach is readily applicable on current noisy intermediate-scale quantum (NISQ) devices.
Development of resource-friendly quantum algorithms remains highly desirable for noisy intermediate-scale quantum computing. Based on the variational quantum eigensolver (VQE) with unitary coupled cluster ansatz, we demonstrate that partitioning of t he Hilbert space made possible by the point group symmetry of the molecular systems greatly reduces the number of variational operators by confining the variational search within a subspace. In addition, we found that instead of including all subterms for each excitation operator, a single-term representation suffices to reach required accuracy for various molecules tested, resulting in an additional shortening of the quantum circuit. With these strategies, VQE calculations on a noiseless quantum simulator achieve energies within a few meVs of those obtained with the full UCCSD ansatz for $mathrm{H}_4$ square, $mathrm{H}_4$ chain and $mathrm{H}_6$ hexagon molecules; while the number of controlled-NOT (CNOT) gates, a measure of the quantum-circuit depth, is reduced by a factor of as large as 35. Furthermore, we introduced an efficient score parameter to rank the excitation operators, so that the operators causing larger energy reduction can be applied first. Using $mathrm{H}_4$ square and $mathrm{H}_4$ chain as examples, We demonstrated on noisy quantum simulators that the first few variational operators can bring the energy within the chemical accuracy, while additional operators do not improve the energy since the accumulative noise outweighs the gain from the expansion of the variational ansatz.
In this paper, beam diagnostic and monitoring tools developed by the MAX IV Operations Group are discussed. In particular, new beam position monitoring and accelerator tunes visualization software tools, as well as tools that directly influence the b eam quality and stability are introduced. An availability and downtime monitoring application is also presented.
We report $^{51}$V NMR, $mu$SR and zero applied field $^{63,65}$Cu NMR measurements on powder samples of Sr-vesignieite, SrCu$_3$V$_2$O$_8$(OH)$_2$, a $S = 1/2$ nearly-kagome Heisenberg antiferromagnet. Our results demonstrate that the ground state i s a $mathbf{q} = 0$ magnetic structure with spins canting either in or out of the kagome plane, giving rise to weak ferromagnetism. We determine the size of ordered moments and the angle of canting for different possible $mathbf{q} = 0$ structures and orbital scenarios, thereby providing insight into the role of the Dzyaloshinskii-Moriya (DM) interaction in this material.
80 - G.F. Bertsch , W. Younes , 2019
An outstanding problem in the theory of nuclear fission is to understand the Hamiltonian dynamics at the scission point. In this work the fissioning nucleus is modeled in self-consistent mean-field theory as a set of Generator Coordinate (GCM) config urations passing through the scission point. In contrast to previous methods, the configurations are constructed in the Hartree-Fock approximation with axially symmetric mean fields and using the K-partition numbers as additional constraints. The goal of this work is to find paths through the scission point where the overlaps between neighboring configurations are large. A measure of distance along the path is proposed that is insensitive to the division of the path into short segments. For most of the tested K-partitions two shape degrees of freedom are adequate to define smooth paths. However, some of the configurations and candidate paths have sticking points where there are substantial changes in the many-body wave function, especially if quasiparticle excitations are present. The excitation energy deposited in fission fragments arising from thermal excitations in the pre-scission configurations is determined by tracking orbital occupation numbers along the scission paths. This allows us to assess the validity of the well-known scission-point statistical model, in which the scission process is assumed to be fully equilibrated up to the separated fission fragments. The nucleus 236U is taken as a representative example in the calculations.
128 - G.F. Bertsch , W. Younes 2018
We study the feasibility of applying the Generator Coordinate Method (GCM) of self-consistent mean-field theory to calculate decay widths of composite particles to composite-particle final states. The main question is how well the GCM can approximate continuum wave functions in the decay channels. The analysis is straightforward under the assumption that the GCM wave functions are separable into internal and Gaussian center-of-mass wave functions. Two methods are examined for calculating decays widths. In one method, the density of final states is computed entirely in the GCM framework. In the other method, it is determined by matching the GCM wave function to an asymptotic scattering wave function. Both methods are applied to a numerical example and are found to agree within their determined uncertainties.
54 - G.F. Bertsch , W. Younes , 2018
We propose a framework to calculate the dynamics at the scission point of nuclear fission, based as far as possible on a discrete representation of orthogonal many-body configurations. Assuming axially symmetric scission shapes, we use the $K$ orbita l quantum number to build a basis of wave functions. Pre-scission configurations are stable under mean-field dynamics while post-scission configurations evolve to separated fragments. In this first exploratory study, we analyze a typical fission trajectory through to scission in terms of these configurations. We find that there is a major rearrangement of the $K$ occupancy factors at scission. Interestingly, very different fragment shapes occur in the post-scission configurations, even starting from the same pre-scission configuration.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا