ﻻ يوجد ملخص باللغة العربية
We report $^{51}$V NMR, $mu$SR and zero applied field $^{63,65}$Cu NMR measurements on powder samples of Sr-vesignieite, SrCu$_3$V$_2$O$_8$(OH)$_2$, a $S = 1/2$ nearly-kagome Heisenberg antiferromagnet. Our results demonstrate that the ground state is a $mathbf{q} = 0$ magnetic structure with spins canting either in or out of the kagome plane, giving rise to weak ferromagnetism. We determine the size of ordered moments and the angle of canting for different possible $mathbf{q} = 0$ structures and orbital scenarios, thereby providing insight into the role of the Dzyaloshinskii-Moriya (DM) interaction in this material.
Single crystal neutron diffraction, inelastic neutron scattering, bulk magnetization measurements, and first-principles calculations are used to investigate the magnetic properties of the honeycomb lattice $rm Tb_2Ir_3Ga_9$. While the $Rln2$ magnetic
The spin-$frac{1}{2}$ kagome antiferromagnet is an archetypal frustrated system predicted to host a variety of exotic magnetic states. We show using neutron scattering measurements that deuterated vesignieite BaCu$_{3}$V$_{2}$O$_{8}$(OD)$_{2}$, a ful
Using THz spectroscopy, we show that the spin-wave spectrum of multiferroic BiFeO$_3$ in its high-field canted antiferromagnetic state is well described by a spin model that violates rhombohedral symmetry. We demonstrate that the monoclinic distortio
The double-perovskite A$_2$BBO$_6$ with heavy transition metal ions on the ordered B sites is an important family of compounds to study the interplay between electron correlation and spin-orbit coupling (SOC). Here we prepared high-quality Sr$_2$MgRe
The kagome lattice -- a two-dimensional (2D) arrangement of corner-sharing triangles -- is at the forefront of the search for exotic states generated by magnetic frustration. Such states have been observed experimentally for Heisenberg and planar spi