ترغب بنشر مسار تعليمي؟ اضغط هنا

In a previous paper, we announced a formula to compute Gromov-Witten and Welschinger invariants of some toric varieties, in terms of combinatorial objects called floor diagrams. We give here detailed proofs in the tropical geometry framework, in the case when the ambient variety is a complex surface, and give some examples of computations using floor diagrams. The focusing on dimension 2 is motivated by the special combinatoric of floor diagrams compared to arbitrary dimension. We treat a general toric surface case in this dimension: the curve is given by an arbitrary lattice polygon and include computation of Welschinger invariants with pairs of conjugate points. See also cite{FM} for combinatorial treatment of floor diagrams in the projective case.
30 - Erwan Brugalle 2019
This text is an introduction to algebraic enumerative geometry and to applications of tropical geometry to classical geometry, based on a course given during the X-UPS mathematical days, 2008 May 14th and 15th. The aim of this text is to be understandable by a first year master student.
We study the degree of polynomial representations of knots. We give the lexicographic degree of all two-bridge knots with 11 or fewer crossings. First, we estimate the total degree of a lexicographic parametrisation of such a knot. This allows us to transform this problem into a study of real algebraic trigonal plane curves, and in particular to use the braid theoretical method developed by Orevkov.
Let $K$ be a link of Conways normal form $C(m)$, $m geq 0$, or $C(m,n)$ with $mntextgreater{}0$, and let $D$ be a trigonal diagram of $K.$ We show that it is possible to transform $D$ into an alternating trigonal diagram, so that all intermediate dia grams remain trigonal, and the number of crossings never increases.
We study the degree of polynomial representations of knots. We obtain the lexicographic degree for two-bridge torus knots and generalized twist knots. The proof uses the braid theoretical method developed by Orevkov to study real plane curves, combin ed with previous results from [KP10] and [BKP14]. We also give a sharp lower bound for the lexicographic degree of any knot, using real polynomial curves properties.
In this paper we prove several lifting theorems for morphisms of tropical curves. We interpret the obstruction to lifting a finite harmonic morphism of augmented metric graphs to a morphism of algebraic curves as the non-vanishing of certain Hurwitz numbers, and we give various conditions under which this obstruction does vanish. In particular we show that any finite harmonic morphism of (non-augmented) metric graphs lifts. We also give various applications of these results. For example, we show that linear equivalence of divisors on a tropical curve C coincides with the equivalence relation generated by declaring that the fibers of every finite harmonic morphism from C to the tropical projective line are equivalent. We study liftability of metrized complexes equipped with a finite group action, and use this to classify all augmented metric graphs arising as the tropicalization of a hyperelliptic curve. We prove that there exists a d-gonal tropical curve that does not lift to a d-gonal algebraic curve. This article is the second in a series of two.
Let K be an algebraically closed, complete non-Archimedean field. The purpose of this paper is to carefully study the extent to which finite morphisms of algebraic K-curves are controlled by certain combinatorial objects, called skeleta. A skeleton i s a metric graph embedded in the Berkovich analytification of X. A skeleton has the natural structure of a metrized complex of curves. We prove that a finite morphism of K-curves gives rise to a finite harmonic morphism of a suitable choice of skeleta. We use this to give analytic proofs of stronger skeletonized
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا