ﻻ يوجد ملخص باللغة العربية
Let K be an algebraically closed, complete non-Archimedean field. The purpose of this paper is to carefully study the extent to which finite morphisms of algebraic K-curves are controlled by certain combinatorial objects, called skeleta. A skeleton is a metric graph embedded in the Berkovich analytification of X. A skeleton has the natural structure of a metrized complex of curves. We prove that a finite morphism of K-curves gives rise to a finite harmonic morphism of a suitable choice of skeleta. We use this to give analytic proofs of stronger skeletonized
In this paper we prove several lifting theorems for morphisms of tropical curves. We interpret the obstruction to lifting a finite harmonic morphism of augmented metric graphs to a morphism of algebraic curves as the non-vanishing of certain Hurwitz
Let ${cal M}_{g,[n]}$, for $2g-2+n>0$, be the D-M moduli stack of smooth curves of genus $g$ labeled by $n$ unordered distinct points. The main result of the paper is that a finite, connected etale cover ${cal M}^l$ of ${cal M}_{g,[n]}$, defined over
We propose a new notion called emph{infinity-harmonic maps}between Riemannain manifolds. These are natural generalizations of the well known notion of infinity harmonic functions and are also the limiting case of $p$% -harmonic maps as $pto infty $.
We describe the relationship between complex-valued harmonic morphisms from Minkowski 4-space} and the shear-free ray congruences of mathematical physics. Then we show how a horizontally conformal submersion on a domain of Euclidean 3-space gives the
Let $pi: X to Y$ be a morphism of projective varieties and suppose that $alpha$ is a pseudo-effective numerical cycle class satisfying $pi_*alpha = 0$. A conjecture of Debarre, Jiang, and Voisin predicts that $alpha$ is a limit of classes of effectiv