ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate opinion dynamics in multi-agent networks when a bias toward one of two possible opinions exists; for example, reflecting a status quo vs a superior alternative. Starting with all agents sharing an initial opinion representing the statu s quo, the system evolves in steps. In each step, one agent selected uniformly at random adopts the superior opinion with some probability $alpha$, and with probability $1 - alpha$ it follows an underlying update rule to revise its opinion on the basis of those held by its neighbors. We analyze convergence of the resulting process under two well-known update rules, namely majority and voter. The framework we propose exhibits a rich structure, with a non-obvious interplay between topology and underlying update rule. For example, for the voter rule we show that the speed of convergence bears no significant dependence on the underlying topology, whereas the picture changes completely under the majority rule, where network density negatively affects convergence. We believe that the model we propose is at the same time simple, rich, and modular, affording mathematical characterization of the interplay between bias, underlying opinion dynamics, and social structure in a unified setting.
Spectral techniques have proved amongst the most effective approaches to graph clustering. However, in general they require explicit computation of the main eigenvectors of a suitable matrix (usually the Laplacian matrix of the graph). Recent work (e .g., Becchetti et al., SODA 2017) suggests that observing the temporal evolution of the power method applied to an initial random vector may, at least in some cases, provide enough information on the space spanned by the first two eigenvectors, so as to allow recovery of a hidden partition without explicit eigenvector computations. While the results of Becchetti et al. apply to perfectly balanced partitions and/or graphs that exhibit very strong forms of regularity, we extend their approach to graphs containing a hidden $k$ partition and characterized by a milder form of volume-regularity. We show that the class of $k$-volume-regular graphs is the largest class of undirected (possibly weighted) graphs whose transition matrix admits $k$ stepwise eigenvectors (i.e., vectors that are constant over each set of the hidden partition). To obtain this result, we highlight a connection between volume regularity and lumpability of Markov chains. Moreover, we prove that if the stepwise eigenvectors are those associated to the first $k$ eigenvalues and the gap between the $k$-th and the ($k$+1)-th eigenvalues is sufficiently large, the averaging dynamics of Becchetti et al. recovers the underlying community structure of the graph in logarithmic time, with high probability.
The election control problem through social influence asks to find a set of nodes in a social network of voters to be the starters of a political campaign aiming at supporting a given target candidate. Voters reached by the campaign change their opin ions on the candidates. The goal is to shape the diffusion of the campaign in such a way that the chances of victory of the target candidate are maximized. Previous work shows that the problem can be approximated within a constant factor in several models of information diffusion and voting systems, assuming that the controller, i.e., the external agent that starts the campaign, has full knowledge of the preferences of voters. However this information is not always available since some voters might not reveal it. Herein we relax this assumption by considering that each voter is associated with a probability distribution over the candidates. We propose two models in which, when an electoral campaign reaches a voter, this latter modifies its probability distribution according to the amount of influence it received from its neighbors in the network. We then study the election control problem through social influence on the new models: In the first model, under the Gap-ETH, election control cannot be approximated within a factor better than $1/n^{o(1)}$, where $n$ is the number of voters; in the second model, which is a slight relaxation of the first one, the problem admits a constant factor approximation algorithm.
Online social networks are used to diffuse opinions and ideas among users, enabling a faster communication and a wider audience. The way in which opinions are conditioned by social interactions is usually called social influence. Social influence is extensively used during political campaigns to advertise and support candidates. Herein we consider the problem of exploiting social influence in a network of voters in order to change their opinion about a target candidate with the aim of increasing his chance to win/lose the election in a wide range of voting systems. We introduce the Linear Threshold Ranking, a natural and powerful extension of the well-established Linear Threshold Model, which describes the change of opinions taking into account the amount of exercised influence. We are able to maximize the score of a target candidate up to a factor of $1-1/e$ by showing submodularity. We exploit such property to provide a $frac{1}{3}(1-1/e)$-approximation algorithm for the constructive election control problem. Similarly, we get a $frac{1}{2}(1-1/e)$-approximation ratio in the destructive scenario. The algorithm can be used in arbitrary scoring rule voting systems, including plurality rule and borda count. Finally, we perform an experimental study on real-world networks, measuring Probability of Victory (PoV) and Margin of Victory (MoV) of the target candidate, to validate the model and to test the capability of the algorithm.
We investigate the behavior of a simple majority dynamics on networks of agents whose interaction topology exhibits a community structure. By leveraging recent advancements in the analysis of dynamics, we prove that, when the states of the nodes are randomly initialized, the system rapidly and stably converges to a configuration in which the communities maintain internal consensus on different states. This is the first analytical result on the behavior of dynamics for non-consensus problems on non-complete topologies, based on the first symmetry-breaking analysis in such setting. Our result has several implications in different contexts in which dynamics are adopted for computational and biological modeling purposes. In the context of Label Propagation Algorithms, a class of widely used heuristics for community detection, it represents the first theoretical result on the behavior of a distributed label propagation algorithm with quasi-linear message complexity. In the context of evolutionary biology, dynamics such as the Moran process have been used to model the spread of mutations in genetic populations [Lieberman, Hauert, and Nowak 2005]; our result shows that, when the probability of adoption of a given mutation by a node of the evolutionary graph depends super-linearly on the frequency of the mutation in the neighborhood of the node and the underlying evolutionary graph exhibits a community structure, there is a non-negligible probability for species differentiation to occur.
Consider the following process on a network: Each agent initially holds either opinion blue or red; then, in each round, each agent looks at two random neighbors and, if the two have the same opinion, the agent adopts it. This process is known as the 2-Choices dynamics and is arguably the most basic non-trivial opinion dynamics modeling voting behavior on social networks. Despite its apparent simplicity, 2-Choices has been analytically characterized only on restricted network classes---under assumptions on the initial configuration that establish it as a fast majority consensus protocol. In this work, we aim at contributing to the understanding of the 2-Choices dynamics by considering its behavior on a class of networks with core-periphery structure, a well-known topological assumption in social networks. In a nutshell, assume that a densely-connected subset of agents, the core, holds a different opinion from the rest of the network, the periphery. Then, depending on the strength of the cut between the core and the periphery, a phase-transition phenomenon occurs: Either the cores opinion rapidly spreads among the rest of the network, or a metastability phase takes place, in which both opinions coexist in the network for superpolynomial time. The interest of our result is twofold. On the one hand, by looking at the 2-Choices dynamics as a simplistic model of competition among opinions in social networks, our theorem sheds light on the influence of the core on the rest of the network, as a function of the cores connectivity toward the latter. On the other hand, we provide one of the first analytical results which shows a heterogeneous behavior of a simple dynamics as a function of structural parameters of the network. Finally, we validate our theoretical predictions with extensive experiments on real networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا