ترغب بنشر مسار تعليمي؟ اضغط هنا

Exploiting Social Influence to Control Elections Based on Scoring Rules

112   0   0.0 ( 0 )
 نشر من قبل Emilio Cruciani
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Online social networks are used to diffuse opinions and ideas among users, enabling a faster communication and a wider audience. The way in which opinions are conditioned by social interactions is usually called social influence. Social influence is extensively used during political campaigns to advertise and support candidates. Herein we consider the problem of exploiting social influence in a network of voters in order to change their opinion about a target candidate with the aim of increasing his chance to win/lose the election in a wide range of voting systems. We introduce the Linear Threshold Ranking, a natural and powerful extension of the well-established Linear Threshold Model, which describes the change of opinions taking into account the amount of exercised influence. We are able to maximize the score of a target candidate up to a factor of $1-1/e$ by showing submodularity. We exploit such property to provide a $frac{1}{3}(1-1/e)$-approximation algorithm for the constructive election control problem. Similarly, we get a $frac{1}{2}(1-1/e)$-approximation ratio in the destructive scenario. The algorithm can be used in arbitrary scoring rule voting systems, including plurality rule and borda count. Finally, we perform an experimental study on real-world networks, measuring Probability of Victory (PoV) and Margin of Victory (MoV) of the target candidate, to validate the model and to test the capability of the algorithm.



قيم البحث

اقرأ أيضاً

In an election, we are given a set of voters, each having a preference list over a set of candidates, that are distributed on a social network. We consider a scenario where voters may change their preference lists as a consequence of the messages rec eived by their neighbors in a social network. Specifically, we consider a political campaign that spreads messages in a social network in support or against a given candidate and the spreading follows a dynamic model for information diffusion. When a message reaches a voter, this latter changes its preference list according to an update rule. The election control problem asks to find a bounded set of nodes to be the starter of a political campaign in support (constructive problem) or against (destructive problem) a given target candidate $c$, in such a way that the margin of victory of $c$ w.r.t. its most voted opponents is maximized. It has been shown that several variants of the problem can be solved within a constant factor approximation of the optimum, which shows that controlling elections by means of social networks is doable and constitutes a real problem for modern democracies. Most of the literature, however, focuses on the case of single-winner elections. In this paper, we define the election control problem in social networks for multi-winner elections with the aim of modeling parliamentarian elections. Differently from the single-winner case, we show that the multi-winner election control problem is NP-hard to approximate within any factor in both constructive and destructive cases. We then study a relaxation of the problem where votes are aggregated on the basis of parties (instead of single candidates), which is a variation of the so-called straight-party voting used in some real parliamentarian elections. We show that the latter problem remains NP-hard but can be approximated within a constant factor.
The election control problem through social influence asks to find a set of nodes in a social network of voters to be the starters of a political campaign aiming at supporting a given target candidate. Voters reached by the campaign change their opin ions on the candidates. The goal is to shape the diffusion of the campaign in such a way that the chances of victory of the target candidate are maximized. Previous work shows that the problem can be approximated within a constant factor in several models of information diffusion and voting systems, assuming that the controller, i.e., the external agent that starts the campaign, has full knowledge of the preferences of voters. However this information is not always available since some voters might not reveal it. Herein we relax this assumption by considering that each voter is associated with a probability distribution over the candidates. We propose two models in which, when an electoral campaign reaches a voter, this latter modifies its probability distribution according to the amount of influence it received from its neighbors in the network. We then study the election control problem through social influence on the new models: In the first model, under the Gap-ETH, election control cannot be approximated within a factor better than $1/n^{o(1)}$, where $n$ is the number of voters; in the second model, which is a slight relaxation of the first one, the problem admits a constant factor approximation algorithm.
Users of Online Social Networks (OSNs) interact with each other more than ever. In the context of a public discussion group, people receive, read, and write comments in response to articles and postings. In the absence of access control mechanisms, O SNs are a great environment for attackers to influence others, from spreading phishing URLs, to posting fake news. Moreover, OSN user behavior can be predicted by social science concepts which include conformity and the bandwagon effect. In this paper, we show how social recommendation systems affect the occurrence of malicious URLs on Facebook. We exploit temporal features to build a prediction framework, having greater than 75% accuracy, to predict whether the following group users behavior will increase or not. Included in this work, we demarcate classes of URLs, including those malicious URLs classified as creating critical damage, as well as those of a lesser nature which only inflict light damage such as aggressive commercial advertisements and spam content. It is our hope that the data and analyses in this paper provide a better understanding of OSN user reactions to different categories of malicious URLs, thereby providing a way to mitigate the influence of these malicious URL attacks.
This survey presents the main results achieved for the influence maximization problem in social networks. This problem is well studied in the literature and, thanks to its recent applications, some of which currently deployed on the field, it is rece iving more and more attention in the scientific community. The problem can be formulated as follows: given a graph, with each node having a certain probability of influencing its neighbors, select a subset of vertices so that the number of nodes in the network that are influenced is maximized. Starting from this model, we introduce the main theoretical developments and computational results that have been achieved, taking into account different diffusion models describing how the information spreads throughout the network, various ways in which the sources of information could be placed, and how to tackle the problem in the presence of uncertainties affecting the network. Finally, we present one of the main application that has been developed and deployed exploiting tools and techniques previously discussed.
The problem of predicting peoples participation in real-world events has received considerable attention as it offers valuable insights for human behavior analysis and event-related advertisement. Today social networks (e.g. Twitter) widely reflect l arge popular events where people discuss their interest with friends. Event participants usually stimulate friends to join the event which propagates a social influence in the network. In this paper, we propose to model the social influence of friends on event attendance. We consider non-geotagged posts besides structures of social groups to infer users attendance. To leverage the information on network topology we apply some of recent graph embedding techniques such as node2vec, HARP and Poincar`e. We describe the approach followed to design the feature space and feed it to a neural network. The performance evaluation is conducted using two large music festivals datasets, namely the VFestival and Creamfields. The experimental results show that our classifier outperforms the state-of-the-art baseline with 89% accuracy observed for the VFestival dataset.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا