ترغب بنشر مسار تعليمي؟ اضغط هنا

We study a lattice gauge theory in Wilsons Hamiltonian formalism. In view of the realization of a quantum simulator for QED in one dimension, we introduce an Abelian model with a discrete gauge symmetry $mathbb{Z}_n$, approximating the $U(1)$ theory for large $n$. We analyze the role of the finiteness of the gauge fields and the properties of physical states, that satisfy a generalized Gausss law. We finally discuss a possible implementation strategy, that involves an effective dynamics in physical space.
In this paper, we will review the co-adjoint orbit formulation of finite dimensional quantum mechanics, and in this framework, we will interpret the notion of quantum Fisher information index (and metric). Following previous work of part of the autho rs, who introduced the definition of Fisher information tensor, we will show how its antisymmetric part is the pullback of the natural Kostant-Kirillov-Souriau symplectic form along some natural diffeomorphism. In order to do this, we will need to understand the symmetric logarithmic derivative as a proper 1-form, settling the issues about its very definition and explicit computation. Moreover, the fibration of co-adjoint orbits, seen as spaces of mixed states, is also discussed.
We consider the $varphi_{1,3}$ off-critical perturbation ${cal M}(m,m;t)$ of the general non-unitary minimal models where $2le mle m$ and $m, m$ are coprime and $t$ measures the departure from criticality corresponding to the $varphi_{1,3}$ integrabl e perturbation. We view these models as the continuum scaling limit in the ferromagnetic Regime III of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. We also consider the RSOS models in the antiferromagnetic Regime II related in the continuum scaling limit to $mathbb{Z}_n$ parfermions with $n=m-2$. Using an elliptic Yang-Baxter algebra of planar tiles encoding the allowed face configurations, we obtain the Hamiltonians of the associated quantum chains defined as the logarithmic derivative of the transfer matrices with periodic boundary conditions. The transfer matrices and Hamiltonians act on a vector space of paths on the $A_{m-1}$ Dynkin diagram whose dimension is counted by generalized Fibonacci numbers.
The expansion dynamics of bosonic gases in optical lattices has recently been the focus of increasing attention, both experimental and theoretical. We consider, by means of numerical Bethe ansatz, the expansion dynamics of initially confined wave pac kets of two interacting bosons on a lattice. We show that a correspondence between the asymptotic expansion velocities and the projection of the evolved wave function over the bound states of the system exists, clarifying the existing picture for such situations. Moreover, we investigate the role of the lattice in this kind of evolution.
We propose and analyze a generalization of the Kitaev chain for fermions with long-range $p$-wave pairing, which decays with distance as a power-law with exponent $alpha$. Using the integrability of the model, we demonstrate the existence of two type s of gapped regimes, where correlation functions decay exponentially at short range and algebraically at long range ($alpha > 1$) or purely algebraically ($alpha < 1$). Most interestingly, along the critical lines, long-range pairing is found to break conformal symmetry for sufficiently small $alpha$. This is accompanied by a violation of the area law for the entanglement entropy in large parts of the phase diagram in the presence of a gap, and can be detected via the dynamics of entanglement following a quench. Some of these features may be relevant for current experiments with cold atomic ions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا