ﻻ يوجد ملخص باللغة العربية
We consider the $varphi_{1,3}$ off-critical perturbation ${cal M}(m,m;t)$ of the general non-unitary minimal models where $2le mle m$ and $m, m$ are coprime and $t$ measures the departure from criticality corresponding to the $varphi_{1,3}$ integrable perturbation. We view these models as the continuum scaling limit in the ferromagnetic Regime III of the Forrester-Baxter Restricted Solid-On-Solid (RSOS) models on the square lattice. We also consider the RSOS models in the antiferromagnetic Regime II related in the continuum scaling limit to $mathbb{Z}_n$ parfermions with $n=m-2$. Using an elliptic Yang-Baxter algebra of planar tiles encoding the allowed face configurations, we obtain the Hamiltonians of the associated quantum chains defined as the logarithmic derivative of the transfer matrices with periodic boundary conditions. The transfer matrices and Hamiltonians act on a vector space of paths on the $A_{m-1}$ Dynkin diagram whose dimension is counted by generalized Fibonacci numbers.
For the simplest quantum field theory originating from a non-trivial fixed point of the renormalization group, the Lee-Yang model, we show that the operator space determined by the particle dynamics in the massive phase and that prescribed by conformal symmetry at criticality coincide.
The bootstrap determination of the geometrical correlation functions in the two-dimensional Potts model proposed in a paper [arXiv:1607.07224] was later shown in [arXiv:1809.02191] to be incorrect, the actual spectrum of the model being considerably
We construct lattice parafermions - local products of order and disorder operators - in nearest-neighbor Z(N) models on regular isotropic planar lattices, and show that they are discretely holomorphic, that is they satisfy discrete Cauchy-Riemann equ
In $SU(N)$ gauge theory, it is argued recently that there exists a mixed anomaly between the CP symmetry and the 1-form $mathbb{Z}_N$ symmetry at $theta=pi$, and the anomaly matching requires CP to be spontaneously broken at $theta=pi$ if the system
We investigate chiral zero modes and winding numbers at fixed points on $T^2/mathbb{Z}_N$ orbifolds. It is shown that the Atiyah-Singer index theorem for the chiral zero modes leads to a formula $n_+-n_-=(-V_++V_-)/2N$, where $n_{pm}$ are the numbers