ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete Abelian Gauge Theories for Quantum Simulations of QED

363   0   0.0 ( 0 )
 نشر من قبل Francesco Pepe
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a lattice gauge theory in Wilsons Hamiltonian formalism. In view of the realization of a quantum simulator for QED in one dimension, we introduce an Abelian model with a discrete gauge symmetry $mathbb{Z}_n$, approximating the $U(1)$ theory for large $n$. We analyze the role of the finiteness of the gauge fields and the properties of physical states, that satisfy a generalized Gausss law. We finally discuss a possible implementation strategy, that involves an effective dynamics in physical space.

قيم البحث

اقرأ أيضاً

We develop a quantum simulator architecture that is suitable for the simulation of $U(1)$ Abelian gauge theories such as quantum electrodynamics. Our approach relies on the ability to control the hopping of a particle through a barrier by means of th e internal quantum states of a neutral or charged impurity-particle sitting at the barrier. This scheme is experimentally feasible, as the correlated hopping does not require fine-tuning of the intra- and inter-species interactions. We investigate the applicability of the scheme in a double well potential, which is the basic building block of the simulator, both at the single-particle and the many-body mean-field level. Moreover, we evaluate its performance for different particle interactions and trapping, and, specifically for atom-ion systems, in the presence of micro-motion.
We explore finite-field frameworks for quantum theory and quantum computation. The simplest theory, defined over unrestricted finite fields, is unnaturally strong. A second framework employs only finite fields with no solution to x^2+1=0, and thus pe rmits an elegant complex representation of the extended field by adjoining i=sqrt{-1}. Quantum theories over these fields recover much of the structure of conventional quantum theory except for the condition that vanishing inner products arise only from null states; unnaturally strong computational power may still occur. Finally, we are led to consider one more framework, with further restrictions on the finite fields, that recovers a local transitive order and a locally-consistent notion of inner product with a new notion of cardinal probability. In this framework, conventional quantum mechanics and quantum computation emerge locally (though not globally) as the size of the underlying field increases. Interestingly, the framework allows one to choose separate finite fields for system description and for measurement: the size of the first field quantifies the resources needed to describe the system and the size of the second quantifies the resources used by the observer. This resource-based perspective potentially provides insights into quantitative measures for actual computational power, the complexity of quantum system definition and evolution, and the independent question of the cost of the measurement process.
Gauge field theories play a central role in modern physics and are at the heart of the Standard Model of elementary particles and interactions. Despite significant progress in applying classical computational techniques to simulate gauge theories, it has remained a challenging task to compute the real-time dynamics of systems described by gauge theories. An exciting possibility that has been explored in recent years is the use of highly-controlled quantum systems to simulate, in an analog fashion, properties of a target system whose dynamics are difficult to compute. Engineered atom-laser interactions in a linear crystal of trapped ions offer a wide range of possibilities for quantum simulations of complex physical systems. Here, we devise practical proposals for analog simulation of simple lattice gauge theories whose dynamics can be mapped onto spin-spin interactions in any dimension. These include 1+1D quantum electrodynamics, 2+1D Abelian Chern-Simons theory coupled to fermions, and 2+1D pure Z2 gauge theory. The scheme proposed, along with the optimization protocol applied, will have applications beyond the examples presented in this work, and will enable scalable analog quantum simulation of Heisenberg spin models in any number of dimensions and with arbitrary interaction strengths.
Gauge theories establish the standard model of particle physics, and lattice gauge theory (LGT) calculations employing Markov Chain Monte Carlo (MCMC) methods have been pivotal in our understanding of fundamental interactions. The present limitations of MCMC techniques may be overcome by Hamiltonian-based simulations on classical or quantum devices, which further provide the potential to address questions that lay beyond the capabilities of the current approaches. However, for continuous gauge groups, Hamiltonian-based formulations involve infinite-dimensional gauge degrees of freedom that can solely be handled by truncation. Current truncation schemes require dramatically increasing computational resources at small values of the bare couplings, where magnetic field effects become important. Such limitation precludes one from `taking the continuous limit while working with finite resources. To overcome this limitation, we provide a resource-efficient protocol to simulate LGTs with continuous gauge groups in the Hamiltonian formulation. Our new method allows for calculations at arbitrary values of the bare coupling and lattice spacing. The approach consists of the combination of a Hilbert space truncation with a regularization of the gauge group, which permits an efficient description of the magnetically-dominated regime. We focus here on Abelian gauge theories and use $2+1$ dimensional quantum electrodynamics as a benchmark example to demonstrate this efficient framework to achieve the continuum limit in LGTs. This possibility is a key requirement to make quantitative predictions at the field theory level and offers the long-term perspective to utilise quantum simulations to compute physically meaningful quantities in regimes that are precluded to quantum Monte Carlo.
We describe the simulation of dihedral gauge theories on digital quantum computers. The nonabelian discrete gauge group $D_N$ -- the dihedral group -- serves as an approximation to $U(1)timesmathbb{Z}_2$ lattice gauge theory. In order to carry out su ch a lattice simulation, we detail the construction of efficient quantum circuits to realize basic primitives including the nonabelian Fourier transform over $D_N$, the trace operation, and the group multiplication and inversion operations. For each case the required quantum resources scale linearly or as low-degree polynomials in $n=log N$. We experimentally benchmark our gates on the Rigetti Aspen-9 quantum processor for the case of $D_4$. The fidelity of all $D_4$ gates was found to exceed $80%$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا