ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the problem of intertwined orders in fractional Chern insulators by considering lattice fractional quantum Hall (FQH) states arising from pairing of composite fermions in the square-lattice Hofstadter model. At certain filling fraction s, magnetic translation symmetry ensures the composite fermions form Fermi surfaces with multiple pockets, leading to the formation of finite-momentum Cooper pairs in the presence of attractive interactions. We obtain mean-field phase diagrams exhibiting a rich array of striped and topological phases, establishing paired lattice FQH states as an ideal platform to investigate the intertwining of topological and conventional broken symmetry order.
The properties of the isotropic incompressible $ u=5/2$ fractional quantum Hall (FQH) state are described by a paired state of composite fermions in zero (effective) magnetic field, with a uniform $p_x+ip_y$ pairing order parameter, which is a non-Ab elian topological phase with chiral Majorana and charge modes at the boundary. Recent experiments suggest the existence of a proximate nematic phase at $ u=5/2$. This finding motivates us to consider an inhomogeneous paired state - a $p_x+ip_y$ pair-density-wave (PDW) - whose melting could be the origin of the observed liquid-crystalline phases. This state can viewed as an array of domain and anti-domain walls of the $p_x+i p_y$ order parameter. We show that the nodes of the PDW order parameter, the location of the domain walls (and anti-domain walls) where the order parameter changes sign, support a pair of symmetry-protected counter-propagating Majorana modes. The coupling behavior of the domain wall Majorana modes crucially depends on the interplay of the Fermi energy $E_{F}$ and the PDW pairing energy $E_{textrm{pdw}}$. The analysis of this interplay yields a rich set of topological states. The pair-density-wave order state in paired FQH system provides a fertile setting to study Abelian and non-Abelian FQH phases - as well as transitions thereof - tuned by the strength of the paired liquid crystalline order.
Motivated by the appearance of a `reflection symmetry in transport experiments and the absence of statistical periodicity in relativistic quantum field theories, we propose a series of relativistic composite fermion theories for the compressible stat es appearing at filling fractions $ u=1/2n$ in quantum Hall systems. These theories consist of electrically neutral Dirac fermions attached to $2n$ flux quanta via an emergent Chern-Simons gauge field. While not possessing an explicit particle-hole symmetry, these theories reproduce the known Jain sequence states proximate to $ u=1/2n$, and we show that such states can be related by the observed reflection symmetry, at least at mean field level. We further argue that the lowest Landau level limit requires that the Dirac fermions be tuned to criticality, whether or not this symmetry extends to the compressible states themselves.
We study the thermoelectric response of a device containing a pair of helical edge states contacted at the same temperature $T$ and chemical potential $mu$ and connected to an external reservoir, with different chemical potential and temperature, thr ough a side quantum dot. Different operational modes can be induced by applying a magnetic field $B$ and a gate voltage $V_g$ at the quantum dot. At finite $B$, the quantum dot acts simultaneously as a charge and a spin filter. Charge and spin currents are induced, not only through the quantum dot, but also along the edge states. We focus on linear response and analyze the regimes, which we identify as charge heat engines or refrigerator, spin heat engine and spin refrigerator.
Novel controlled non-perturbative techniques are a must in the study of strongly correlated systems, especially near quantum criticality. One of these techniques, bosonization, has been extensively used to understand one-dimensional, as well as highe r dimensional electronic systems at finite density. In this paper, we generalize the theory of two-dimensional bosonization of Fermi liquids, in the presence of a homogeneous weak magnetic field perpendicular to the plane. Here, we extend the formalism of bosonization to treat free spinless fermions at finite density in a uniform magnetic field. We show that particle-hole fluctuations of a Fermi surface satisfy a {em covariant Schwinger algebra}, allowing to express a fermionic theory with forward scattering interactions as a quadratic bosonic theory representing the quantum fluctuations of the Fermi surface. By means of a coherent-state path integral formalism we compute the fermion propagator as well as particle-hole bosonic correlations functions. We analyze the presence of de Haas-van Alphen oscillations and show how the quantum oscillations of the orbital magnetization, the Lifshitz-Kosevich theory, are obtained by means of the bosonized theory. We also study the effects of forward scattering interactions. In particular, we obtain oscillatory corrections to the Landau zero sound collective mode.
We consider a family of quantum loop models in 2+1 spacetime dimensions with marginally long-ranged and statistical interactions mediated by a U$(1)$ gauge field, both purely in 2+1 dimensions and on a surface in a 3+1 dimensional bulk system. In the absence of fractional spin, these theories have been shown to be self-dual under particle-vortex duality and shifts of the statistical angle of the loops by $2pi$, which form a subgroup of the modular group, PSL$(2,mathbb{Z})$. We show that careful consideration of fractional spin in these theories completely breaks their statistical periodicity and describe how this occurs, resolving a disagreement with the conformal field theories they appear to approach at criticality. We show explicitly that incorporation of fractional spin leads to loop model dualities which parallel the recent web of 2+1 dimensional field theory dualities, providing a nontrivial check on its validity.
We study the linear thermoelectric response of a quantum dot embedded in a constriction of a quantum Hall bar with fractional filling factors nu=1/m within Laughlin series. We calculate the figure of merit ZT for the maximum efficiency at a fixed tem perature difference. We find a significant enhancement of this quantity in the fractional filling in relation to the integer-filling case, which is a direct consequence of the fractionalization of the electron in the fractional quantum Hall state. We present simple theoretical expressions for the Onsager coefficients at low temperatures, which explicitly show that ZT and the Seebeck coefficient increase with m.
We formulate a Chern-Simons composite fermion theory for Fractional Chern Insulators (FCIs), whereby bare fermions are mapped into composite fermions coupled to a lattice Chern-Simons gauge theory. We apply this construction to a Chern insulator mode l on the kagome lattice and identify a rich structure of gapped topological phases characterized by fractionalized excitations including states with unequal filling and Hall conductance. Gapped states with the same Hall conductance at different filling fractions are characterized as realizing distinct symmetry fractionalization classes.
We study gapless quantum spin chains with spin 1/2 and 1: the Fredkin and Motzkin models. Their entangled groundstates are known exactly but not their excitation spectra. We first express the groundstates in the continuum which allows for the calcula tion of spin and entanglement properties in a unified fashion. Doing so, we uncover an emergent conformal-type symmetry, thus consolidating the connection to a widely studied family of Lifshitz quantum critical points in 2d. We then obtain the low lying excited states via large-scale DMRG simulations and find that the dynamical exponent is z = 3.2 in both cases. Other excited states show a different z, indicating that these models have multiple dynamics. Moreover, we modify the spin-1/2 model by adding a ferromagnetic Heisenberg term, which changes the entire spectrum. We track the resulting non-trivial evolution of the dynamical exponents using DMRG. Finally, we exploit an exact map from the quantum Hamiltonian to the non-equilibrium dynamics of a classical spin chain to shed light on the quantum dynamics.
Many-body systems with multiple emergent time scales arise in various contexts, including classical critical systems, correlated quantum materials, and ultra-cold atoms. We investigate such non-trivial quantum dynamics in a new setting: a spin-1 bili near-biquadratic chain. It has a solvable entangled groundstate, but a gapless excitation spectrum that is poorly understood. By using large-scale DMRG simulations, we find that the lowest excitations have a dynamical exponent $z$ that varies from 2 to 3.2 as we vary a coupling in the Hamiltonian. We find an additional gapless mode with a continuously varying exponent $2leq z <2.7$, which establishes the presence of multiple dynamics. In order to explain these striking properties, we construct a continuum wavefunction for the groundstate, which correctly describes the correlations and entanglement properties. We also give a continuum parent Hamiltonian, but show that additional ingredients are needed to capture the excitations of the chain. By using an exact mapping to the non-equilibrium dynamics of a classical spin chain, we find that the large dynamical exponent is due to subdiffusive spin motion. Finally, we discuss the connections to other spin chains and to a family of quantum critical models in 2d.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا