ﻻ يوجد ملخص باللغة العربية
The properties of the isotropic incompressible $ u=5/2$ fractional quantum Hall (FQH) state are described by a paired state of composite fermions in zero (effective) magnetic field, with a uniform $p_x+ip_y$ pairing order parameter, which is a non-Abelian topological phase with chiral Majorana and charge modes at the boundary. Recent experiments suggest the existence of a proximate nematic phase at $ u=5/2$. This finding motivates us to consider an inhomogeneous paired state - a $p_x+ip_y$ pair-density-wave (PDW) - whose melting could be the origin of the observed liquid-crystalline phases. This state can viewed as an array of domain and anti-domain walls of the $p_x+i p_y$ order parameter. We show that the nodes of the PDW order parameter, the location of the domain walls (and anti-domain walls) where the order parameter changes sign, support a pair of symmetry-protected counter-propagating Majorana modes. The coupling behavior of the domain wall Majorana modes crucially depends on the interplay of the Fermi energy $E_{F}$ and the PDW pairing energy $E_{textrm{pdw}}$. The analysis of this interplay yields a rich set of topological states. The pair-density-wave order state in paired FQH system provides a fertile setting to study Abelian and non-Abelian FQH phases - as well as transitions thereof - tuned by the strength of the paired liquid crystalline order.
Motivated by the recent experiments on the kagome metals $Atext{V}_3text{Sb}_5$ with $A=text{K}, text{Rb}, text{Cs}$, which see onset of charge density wave (CDW) order at $sim$ $100$ K and superconductivity at $sim$ $1$ K, we explore the onset of su
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamilton
The Kane-Mele (KM) model is proposed to describe the quantum spin Hall effect of electrons on the two-dimensional honeycomb lattice. Here, we will show that, in a certain parameter region, the London equation is obtained from the effective field theo
As a foundation of condensed matter physics, the normal states of most metals are successfully described by Landau Fermi liquid theory with quasi-particles and their Fermi surfaces (FSs). The FSs sometimes become deformed or gapped at low temperature
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fra