ترغب بنشر مسار تعليمي؟ اضغط هنا

Pair-Density-Wave Order and Paired Fractional Quantum Hall Fluids

300   0   0.0 ( 0 )
 نشر من قبل Luiz Santos
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The properties of the isotropic incompressible $ u=5/2$ fractional quantum Hall (FQH) state are described by a paired state of composite fermions in zero (effective) magnetic field, with a uniform $p_x+ip_y$ pairing order parameter, which is a non-Abelian topological phase with chiral Majorana and charge modes at the boundary. Recent experiments suggest the existence of a proximate nematic phase at $ u=5/2$. This finding motivates us to consider an inhomogeneous paired state - a $p_x+ip_y$ pair-density-wave (PDW) - whose melting could be the origin of the observed liquid-crystalline phases. This state can viewed as an array of domain and anti-domain walls of the $p_x+i p_y$ order parameter. We show that the nodes of the PDW order parameter, the location of the domain walls (and anti-domain walls) where the order parameter changes sign, support a pair of symmetry-protected counter-propagating Majorana modes. The coupling behavior of the domain wall Majorana modes crucially depends on the interplay of the Fermi energy $E_{F}$ and the PDW pairing energy $E_{textrm{pdw}}$. The analysis of this interplay yields a rich set of topological states. The pair-density-wave order state in paired FQH system provides a fertile setting to study Abelian and non-Abelian FQH phases - as well as transitions thereof - tuned by the strength of the paired liquid crystalline order.

قيم البحث

اقرأ أيضاً

Motivated by the recent experiments on the kagome metals $Atext{V}_3text{Sb}_5$ with $A=text{K}, text{Rb}, text{Cs}$, which see onset of charge density wave (CDW) order at $sim$ $100$ K and superconductivity at $sim$ $1$ K, we explore the onset of su perconductivity, taking the perspective that it descends from a parent CDW state. In particular, we propose that the pairing comes from the Pomeranchuk fluctuations of the reconstructed Fermi surface in the CDW phase. This scenario naturally explains the large separation of energy scale from the parent CDW. Remarkably, the phase diagram hosts the double-dome superconductivity near two reconstructed Van Hove singularities. These singularities occur at the Lifshitz transition and the quantum critical point of the parent CDW. The first dome is occupied by the $d_{xy}$-wave nematic spin-singlet superconductivity. Meanwhile, the $(s+d_{x^2-y^2})$-wave nematic spin-singlet superconductivity develops in the second dome. Our work sheds light on an unconventional pairing mechanism with strong evidences in the kagome metals $Atext{V}_3text{Sb}_5$.
89 - Zi-Xiang Hu , Z. Papic , S. Johri 2012
We report a systematic study of the fractional quantum Hall effect (FQHE) using the density-matrix renormalization group (DMRG) method on two different geometries: the sphere and the cylinder. We provide convergence benchmarks based on model Hamilton ians known to possess exact zero-energy ground states, as well as an analysis of the number of sweeps and basis elements that need to be kept in order to achieve the desired accuracy.The ground state energies of the Coulomb Hamiltonian at $ u=1/3$ and $ u=5/2$ filling are extracted and compared with the results obtained by previous DMRG implementations in the literature. A remarkably rapid convergence in the cylinder geometry is noted and suggests that this boundary condition is particularly suited for the application of the DMRG method to the FQHE.
73 - Jun Goryo , Nobuki Maeda 2010
The Kane-Mele (KM) model is proposed to describe the quantum spin Hall effect of electrons on the two-dimensional honeycomb lattice. Here, we will show that, in a certain parameter region, the London equation is obtained from the effective field theo ry of the layered KM model with an electronic correlation.
355 - X.-L. Peng , K. Jiang , Y.-H. Yuan 2020
As a foundation of condensed matter physics, the normal states of most metals are successfully described by Landau Fermi liquid theory with quasi-particles and their Fermi surfaces (FSs). The FSs sometimes become deformed or gapped at low temperature s owing to quasi-particle interactions, known as FS instabilities. A notable example of a FS deformation that breaks only the rotation symmetry, namely Pomeranchuk instability, is the d-wave FS distortion, which is also proposed as one possible origin of electron nematicity in iron-based superconductors. However, no clear evidence has been made for its existence, mostly owing to the mixture of multiple orders. Here we report an unequivocally observation of the Pomeranchuk nematic order in floating monolayer (ML) FeSe on 1 ML-FeSe/SrTiO3 substrate. By using angle-resolve photoemission spectroscopy, we find remarkably that the dxz and dyz bands are degenerate at the Brillouin zone center (Gamma point), while their splitting is even larger at zone corner (M point), in stark contrast to that in bulk FeSe. Our detailed analysis show that the momentum-dependent nematic order in floating monolayer FeSe is coming from the d-wave Pomeranchuk instability at M point, shedding light on the origin of the ubiquitous nematicity in iron-based superconductors. Our results establish the single-layer high-Tc superconductors as an excellent material platform for investigating emergent quantum physics under complex intertwinement.
Measurements of the Hall and dissipative conductivity of a strained Ge quantum well on a SiGe/(001)Si substrate in the quantum Hall regime are reported. We find quantum Hall states in the Composite Fermion family and a precursor signal at filling fra ction $ u=5/2$. We analyse the results in terms of thermally activated quantum tunneling of carriers from one internal edge state to another across saddle points in the long range impurity potential. This shows that the gaps for different filling fractions closely follow the dependence predicted by theory. We also find that the estimates of the separation of the edge states at the saddle are in line with the expectations of an electrostatic model in the lowest spin-polarised Landau level (LL), but not in the spin-reversed LL where the density of quasiparticle states is not high enough to accommodate the carriers required.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا