ترغب بنشر مسار تعليمي؟ اضغط هنا

Oscillons are extremely long-lived, spatially-localized field configurations in real-valued scalar field theories that slowly lose energy via radiation of scalar waves. Before their eventual demise, oscillons can pass through (one or more) exceptiona lly stable field configurations where their decay rate is highly suppressed. We provide an improved calculation of the non-trivial behavior of the decay rates, and lifetimes of oscillons. In particular, our calculation correctly captures the existence (or absence) of the exceptionally long-lived states for large amplitude oscillons in a broad class of potentials, including non-polynomial potentials that flatten at large field values. The key underlying reason for the improved (by many orders of magnitude in some cases) calculation is the systematic inclusion of a spacetime-dependent effective mass term in the equation describing the radiation emitted by oscillons (in addition to a source term). Our results for the exceptionally stable configurations, decay rates, and lifetime of large amplitude oscillons (in some cases $gtrsim 10^8$ oscillations) in such flattened potentials might be relevant for cosmological applications.
Models in which scalar field dark energy interacts with dark matter via a pure momentum coupling have previously been found to potentially ease the structure formation tension between early- and late-universe observations. In this article we explore the physical mechanism underlying this feature. We argue analytically that the perturbation growth equations imply the suppression of structure growth, illustrating our discussion with numerical calculations. Then we generalise the previously studied quadratic coupling between the dark energy and dark matter to a more general power law case, also allowing for the slope of the dark energy exponential potential to vary. We find that the structure growth suppression is a generic feature of power law couplings and it can, for a range of parameter values, be larger than previously found.
We investigate cosmological models in which dynamical dark energy consists of a scalar field whose present-day value is controlled by a coupling to the neutrino sector. The behaviour of the scalar field depends on three functions: a kinetic function, the scalar field potential, and the scalar field-neutrino coupling function. We present an analytic treatment of the background evolution during radiation- and matter-domination for exponential and inverse power law potentials, and find a relaxation of constraints compared to previous work on the amount of early dark energy in the exponential case. We then carry out a numerical analysis of the background cosmology for both types of potential and various illustrative choices of the kinetic and coupling functions. By applying bounds from Planck on the amount of early dark energy, we are able to constrain the magnitude of the kinetic function at early times.
We present a new class of two-field inflationary attractor models, known as `shift-symmetric orbital inflation, whose behaviour is strongly multi-field but whose predictions are remarkably close to those of single-field inflation. In these models, th e field space metric and potential are such that the inflaton trajectory is along an `angular isometry direction whose `radius is constant but arbitrary. As a result, the radial (isocurvature) perturbations away from the trajectory are exactly massless and they freeze on superhorizon scales. These models are the first exact realization of the `ultra-light isocurvature scenario, previously described in the literature, where a combined shift symmetry emerges between the curvature and isocurvature perturbations and results in primordial perturbation spectra that are entirely consistent with current observations. Due to the turning trajectory, the radial perturbation sources the tangential (curvature) perturbation and makes it grow linearly in time. As a result, only one degree of freedom (i.e. the one from isocurvature modes) is responsible for the primordial observables at the end of inflation, which yields the same phenomenology as in single-field inflation. In particular, isocurvature perturbations and local non-Gaussianity are highly suppressed here, even if the inflationary dynamics is truly multi-field. We comment on the generalization to models with more than two fields.
We develop a consistent analytic approach to determine the conditions under which slow roll inflation can arise when the inflaton is the same scalar field that is responsible for the bounce in Loop Quantum Cosmology (LQC). We find that the requiremen t that the energy density of the field is fixed at the bounce having to match a critical density has important consequences for its future evolution. For a generic potential with a minimum, we find different scenarios depending on the initial velocity of the field and whether it begins life in a kinetic or potential energy dominated regime. For chaotic potentials that start in a kinetic dominated regime, we find an initial phase of superinflation independent of the shape of the potential followed by a damping phase which slows the inflaton down, forcing it to turnaround and naturally enter a phase of slow-roll inflation. If we begin in a potential energy dominated regime, then the field undergoes a period where the corrections present in LQC damp its evolution once again forcing it to turnaround and enter a phase of slow roll inflation. On the other hand we show for the Starobinsky potential that inflation never occurs when we begin in a potential dominated regime. In fact traditional Starobinsky inflation has to start in a kinetic energy dominated regime, with corresponding tighter constraints on the initial value of the field for successful inflation than in the conventional case. Comparing our analytic results to published numerical ones, we find remarkable agreement especially when we consider the different epochs that are involved. In particular the values of key observables obtained from the two approaches are in excellent agreement, opening up the possibility of obtaining analytic results for the evolution of the density perturbations in these models.
Scalar fields coupled to gravity through the Ricci scalar have been considered both as dark matter candidates and as a possible modified gravity explanation for galactic dynamics. It has recently been demonstrated that the dynamics of baryonic matter in disk galaxies may be explained, in the absence of particle dark matter, by a symmetron scalar field that mediates a fifth force. The symmetron provides a concrete and archetypal field theory within which to explore how large a role modifications of gravity can play on galactic scales. In this article, we extend these previous works by asking whether the same symmetron field can explain the difference between the baryonic and lens masses of galaxies through a modification of gravity. We consider the possibilities for minimal modifications of the model and find that this difference cannot be explained entirely by the symmetron fifth force without extending the field content of the model. Instead, we are pushed towards a regime of parameter space where one scalar field both mediates a fifth force and stores enough energy density that it also contributes to the galaxys gravitational potential as a dark matter component, a regime which remains to be fully explored.
We revisit the status of scalar-tensor theories with applications to dark energy in the aftermath of the gravitational wave signal GW170817 and its optical counterpart GRB170817A. At the level of the cosmological background, we identify a class of th eories, previously declared unviable in this context, whose anomalous gravitational wave speed is proportional to the scalar equation of motion. As long as the scalar field is assumed not to couple directly to matter, this raises the possibility of compatibility with the gravitational wave data, for any cosmological sources, thanks to the scalar dynamics. This newly rescued class of theories includes examples of generalised quintic galileons from Horndeski theories. Despite the promise of this leading order result, we show that the loophole ultimately fails when we include the effect of large scale inhomogeneities.
It has been recently suggested that oscillons produced in the early universe from certain asymmetric potentials continue to emit gravitational waves for a number of $e$-folds of expansion after their formation, leading to potentially detectable gravi tational wave signals. We revisit this claim by conducting a convergence study using graphics processing unit (GPU)-accelerated lattice simulations and show that numerical errors accumulated with time are significant in low-resolution scenarios, or in scenarios where the run-time causes the resolution to drop below the relevant scales in the problem. Our study determines that the dominant, growing high frequency peak of the gravitational wave signals in the fiducial hill-top model in [arXiv:1607.01314] is a numerical artifact. This finding prompts the need for a more careful analysis of the numerical validity of other similar results related to gravitational waves from oscillon dynamics.
Chameleon scalar fields can screen their associated fifth forces from detection by changing their mass with the local density. These models are an archetypal example of a screening mechanism, and have become an important target for both cosmological surveys and terrestrial experiments. In particular there has been much recent interest in searching for chameleon fifth forces in the laboratory. It is known that the chameleon force is less screened around non-spherical sources, but only the field profiles around a few simple shapes are known analytically. In this work we introduce a numerical code that solves for the chameleon field around arbitrary shapes with azimuthal symmetry placed in a spherical vacuum chamber. We find that deviations from spherical symmetry can increase the chameleon acceleration experienced by a test particle by up to a factor of $sim 3$, and that the least screened objects are those which minimize some internal dimension.
Light scalar fields coupled to matter are a common consequence of theories of dark energy and attempts to solve the cosmological constant problem. The chameleon screening mechanism is commonly invoked in order to suppress the fifth forces mediated by these scalars, suficiently to avoid current experimental constraints, without fine tuning. The force is suppressed dynamically by allowing the mass of the scalar to vary with the local density. Recently it has been shown that near future cold atoms experiments using atom-interferometry have the ability to access a large proportion of the chameleon parameter space. In this work we demonstrate how experiments utilising asymmetric parallel plates can push deeper into the remaining parameter space available to the chameleon.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا