ترغب بنشر مسار تعليمي؟ اضغط هنا

Shift-Symmetric Orbital Inflation: single field or multi-field?

196   0   0.0 ( 0 )
 نشر من قبل Yvette Welling
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new class of two-field inflationary attractor models, known as `shift-symmetric orbital inflation, whose behaviour is strongly multi-field but whose predictions are remarkably close to those of single-field inflation. In these models, the field space metric and potential are such that the inflaton trajectory is along an `angular isometry direction whose `radius is constant but arbitrary. As a result, the radial (isocurvature) perturbations away from the trajectory are exactly massless and they freeze on superhorizon scales. These models are the first exact realization of the `ultra-light isocurvature scenario, previously described in the literature, where a combined shift symmetry emerges between the curvature and isocurvature perturbations and results in primordial perturbation spectra that are entirely consistent with current observations. Due to the turning trajectory, the radial perturbation sources the tangential (curvature) perturbation and makes it grow linearly in time. As a result, only one degree of freedom (i.e. the one from isocurvature modes) is responsible for the primordial observables at the end of inflation, which yields the same phenomenology as in single-field inflation. In particular, isocurvature perturbations and local non-Gaussianity are highly suppressed here, even if the inflationary dynamics is truly multi-field. We comment on the generalization to models with more than two fields.



قيم البحث

اقرأ أيضاً

302 - Shinsuke Kawai , Jinsu Kim 2021
Primordial blackholes formed in the early Universe via gravitational collapse of over-dense regions may contribute a significant amount to the present dark matter relic density. Inflation provides a natural framework for the production mechanism of p rimordial blackholes. For example, single field inflation models with a fine-tuned scalar potential may exhibit a period of ultra-slow-roll, during which the curvature perturbation may be enhanced to become seeds of the primordial blackholes formed as the corresponding scales reenter the horizon. In this work we propose an alternative mechanism for the primordial blackhole formation. We consider a model in which a scalar field is coupled to the Gauss-Bonnet term, and show that primordial blackholes may be seeded when a scalar potential term and the Gauss-Bonnet coupling term are nearly balanced. Large curvature perturbation in this model not only leads to the production of primordial blackholes but it also sources gravitational waves at the second order. We calculate the present density parameter of the gravitational waves and discuss the detectability of the signals by comparing them with sensitivity bounds of future gravitational wave experiments.
We calculate the conditions required to produce a large local trispectrum during two-field slow-roll inflation. This is done by extending and simplifying the heatmap approach developed by Byrnes et al. The conditions required to generate a large tris pectrum are broadly the same as those that can produce a large bispectrum. We derive a simple relation between tauNL and fNL for models with separable potentials, and furthermore show that gNL and tauNL can be related in specific circumstances. Additionally, we interpret the heatmaps dynamically, showing how they can be used as qualitative tools to understand the evolution of non-Gaussianity during inflation. We also show how fNL, tauNL and gNL are sourced by generic shapes in the inflationary potential, namely ridges, valleys and inflection points.
We examine the momentum dependence of the bispectrum of two-field inflationary models within the long-wavelength formalism. We determine the sources of scale dependence in the expression for the parameter of non-Gaussianity fNL and study two types of variation of the momentum triangle: changing its size and changing its shape. We introduce two spectral indices that quantify the possible types of momentum dependence of the local type fNL and illustrate our results with examples.
We examine the covariant properties of generalized models of two-field inflation, with non-canonical kinetic terms and a possibly non-trivial field metric. We demonstrate that kinetic-term derivatives and covariant field derivatives do commute in a p roper covariant framework, which was not realized before in the literature. We also define a set of generalized slow-roll parameters, using a unified notation. Within this framework, we study the most general class of models that allows for well-defined adiabatic and entropic sound speeds, which we identify as the models with parallel momentum and field velocity vectors. For these models we write the exact cubic action in terms of the adiabatic and isocurvature perturbations. We thus provide the tool to calculate the exact non-Gaussianity beyond slow-roll and at any scale for these generalized models. We illustrate our general results by considering their long-wavelength limit, as well as with the example of two-field DBI inflation.
We present a complete framework for numerical calculation of the power spectrum and bispectrum in canonical inflation with an arbitrary number of light or heavy fields. Our method includes all relevant effects at tree-level in the loop expansion, inc luding (i) interference between growing and decaying modes near horizon exit; (ii) correlation and coupling between species near horizon exit and on superhorizon scales; (iii) contributions from mass terms; and (iv) all contributions from coupling to gravity. We track the evolution of each correlation function from the vacuum state through horizon exit and the superhorizon regime, with no need to match quantum and classical parts of the calculation; when integrated, our approach corresponds exactly with the tree-level Schwinger or in-in formulation of quantum field theory. In this paper we give the equations necessary to evolve all two- and three-point correlation functions together with suitable initial conditions. The final formalism is suitable to compute the amplitude, shape, and scale dependence of the bispectrum in models with |fNL| of order unity or less, which are a target for future galaxy surveys such as Euclid, DESI and LSST. As an illustration we apply our framework to a number of examples, obtaining quantitatively accurate predictions for their bispectra for the first time. Two accompanying reports describe publicly-available software packages that implement the method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا