ترغب بنشر مسار تعليمي؟ اضغط هنا

Classical Decay Rates of Oscillons

330   0   0.0 ( 0 )
 نشر من قبل Mustafa Amin
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

Oscillons are extremely long-lived, spatially-localized field configurations in real-valued scalar field theories that slowly lose energy via radiation of scalar waves. Before their eventual demise, oscillons can pass through (one or more) exceptionally stable field configurations where their decay rate is highly suppressed. We provide an improved calculation of the non-trivial behavior of the decay rates, and lifetimes of oscillons. In particular, our calculation correctly captures the existence (or absence) of the exceptionally long-lived states for large amplitude oscillons in a broad class of potentials, including non-polynomial potentials that flatten at large field values. The key underlying reason for the improved (by many orders of magnitude in some cases) calculation is the systematic inclusion of a spacetime-dependent effective mass term in the equation describing the radiation emitted by oscillons (in addition to a source term). Our results for the exceptionally stable configurations, decay rates, and lifetime of large amplitude oscillons (in some cases $gtrsim 10^8$ oscillations) in such flattened potentials might be relevant for cosmological applications.



قيم البحث

اقرأ أيضاً

We study the decay of large amplitude, almost periodic breather-like states in a deformed sine-Gordon model in one spatial dimension. We discover that these objects decay in a staggered fashion via a series of transitions, during which higher harmoni cs are released as short, staccato bursts of radiation. Further, we argue that this phenomenon is not restricted to one particular model, and that similar mechanisms of radiative decay of long-lived oscillating states can be observed for a wide class of physical systems, including the $phi^6$ model.
The (1+1)-dimensional classical $varphi^4$ theory contains stable, topological excitations in the form of solitary waves or kinks, as well as stable but non-topological solutions, such as the oscillon. Both are used in effective descriptions of excit ations throughout myriad fields of physics. The oscillon is well-known to be a coherent, particle-like solution when introduced as an Ansatz in the $varphi^4$ theory. Here, we show that oscillons also arise naturally in the dynamics of the theory, in particular as the result of kink-antikink collisions in the presence of an impurity. We show that in addition to the scattering of kinks and the formation of a breather, both bound oscillon pairs and propagating oscillons may emerge from the collision. We discuss their resonances and critical velocity as a function of impurity strength and highlight the role played by the impurity in the scattering process.
The signum-Gordon model in 1+1 dimensions possesses the exact shockwave solution with discontinuity of the field at the light cone and infinite gradient energy. The energy of a regular part of the wave inside the light cone is finite and it grows lin early with time. The initial data for such waves contain a field configuration which is null in the space and has time derivative proportional to the Dirac delta. We study regularized initial data that lead to shock-like waves with finite gradient energy. We found that such waves exist in the finite time intervals and finally they decay and produce a cascade of oscillon-like structures. A pattern of the decay is very similar to the one observed in process of scattering of compact oscillons.
103 - B. C. Nagy , G. Takacs 2021
Oscillons are long-lived, slowly radiating solutions of nonlinear classical relativistic field theories. Recently it was discovered that in one spatial dimension their decay may proceed in staccato bursts. Here we perform a systematic numerical study to demonstrate that although this behaviour is not confined to one spatial dimension, it quickly becomes unobservable when the dimension of space is increased. To complete the picture we also present explicit results on the dimension dependence of the collapse instability observed for three-dimensional oscillons.
We study various aspects of the scattering of generalized compact oscillons in the signum-Gordon model in (1+1) dimensions. Using covariance of the model we construct traveling oscillons and study their interactions and the dependence of these intera ctions on the oscillons initial velocities and their relative phases. The scattering processes transform the two incoming oscillons into two outgoing ones and lead to the generation of extra oscillons which appear in the form of jet-like cascades. Such cascades vanish for some values of free parameters and the scattering processes, even though our model is non-integrable, resemble typical scattering processes normally observed for integrable or quase-integrable models. Occasionally, in the intermediate stage of the process, we have seen the emission of shock waves and we have noticed that, in general, outgoing oscillons have been more involved in their emission than the initial ones i.e. they have a border in form of curved world-lines. The results of our studies of the scattering of oscillons suggest that the radiation of the signum-Gordon model has a fractal-like nature.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا