ترغب بنشر مسار تعليمي؟ اضغط هنا

103 - E.B. Feldman , E.I. Kuznetsova , 2015
We study the remote creation of the polarization and intensity of the first-order coherence (or coherence intensity) in long spin-1/2 chains with one qubit sender and receiver. Therewith we use a physically motivated initial condition with the pure s tate of the sender and the thermodynamical equilibrium state of the other nodes. The main part of the creatable region is a one-to-one map of the initial-state (control) parameters, except the small subregion twice covered by the control parameters, which appears owing to the chosen initial state. The polarization and coherence intensity behave differently in the state creation process. In particular, the coherence intensity can not reach any significant value unless the polarization is large in long chains (unlike the short ones), but the opposite is not true. The coherence intensity vanishes with an increase in the chain length, while the polarization (by absolute value) is not sensitive to this parameter. We represent several characteristics of the creatable polarization and coherence intensity and describe their relation to the parameters of the initial state. The link to the eigenvalue-eigenvector parametrization of the receivers state-space is given.
We study quantum correlations in a bipartite heteronuclear $(N-1)times1$ system in an external magnetic field. The system consists of a spin ring with an arbitrary number $N-1$ of spins on the ring and one spin in its center. The spins on the ring ar e connected by secular dipole-dipole interactions and interact with the central spin through the Heisenberg $zz$-interaction. We show that the quantum discord, describing quantum correlations between the ring and the central spin, can be obtained analytically for this model in the high temperature approximation. The model allows us to find contributions of different parts of the spin-spin interactions to quantum correlations. We also investigate the evolution of quantum and classical correlations at different numbers of spins.
The existence of two phases within one and the same hexagonal lattice of MgB2 compound, differing in Mg and B (in the homogeneity region) and especially in impurity oxygen content, as well as in microstructure, is demonstrated by various techniques. The regions corresponding to these two phases of MgB2 have the sizes of 100-500 {mu}m, and they fill the whole bulk of specimens, alternating with each other. It is suggested that the two-phase state of MgB2 compound is caused by specific features of its formation mechanism (as a result of synthesis at 800-1000{deg}C), including the stages of Mg melting, dissolution of solid boron in it up to the composition of MgB2 and further crystallization of the MgB2 compound from the melt with the formation of dendrite-like structure with corresponding redistribution of main components and impurities.
Annealing of Bi,Pb-2223/Ag composites in (O2+N2) atmosphere at 820-780C is believed to reduce the number of the accompanying phases, to make contacts between crystallites closer and to increase the critical current. The goals of this study were to re veal the changes in the 2223 lattice at annealing in the reduced oxygen atmosphere, to elucidate the reasons of these changes and to discuss their effect on the ceramics superconductivity. After the annealing the transversely-polarized displacement waves of oxygen atoms in [010]2223 direction have been found in the 2223 phase by electron diffraction analysis. These waves could appear due to the lack of oxygen in the 2223 lattice or to the nitrogen penetration in it. As demonstrated by the X-ray photo-electron spectroscopy and nuclear microanalysis, nitrogen does not interact with the 2223 lattice, and the oxygen index decreases to 9.67, which is lower than the stoichiometric. Thus, the atomic displacement waves result from the lack of oxygen in Bi-O bilayers.
This article is devoted to the development of analytical and numerical approaches to the problem of the end-to-end quantum state transfer along the spin-1/2 chain using two methods: (a) a homogeneous spin chain with week end bonds and equal Larmor fr equencies and (b) a homogeneous spin chain with end Larmor frequencies different from inner ones. A tridiagonal matrix representation of the XY Hamiltonian with nearest neighbor interactions relevant to the quantum state transfer is exactly diagonalized for a combination of the above two methods. In order to take into account interactions of the remote spins we used numerical simulations of the quantum state transfer in ten-node chains. We compare the state transfer times obtained using the two above methods for chains governed by the both XY and XXZ Hamiltonians and using both nearest neighbor and all node interactions.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا