ترغب بنشر مسار تعليمي؟ اضغط هنا

137 - C. M. Fromm , M. Perucho , E. Ros 2014
Relativistic jets in active galactic nuclei represent one of the most powerful phenomena in the Universe. They form in the surroundings of the supermassive black holes as a by-product of accretion onto the central black hole in active galaxies. The f low in the jets propagates at velocities close to the speed of light. The distance between the first part of the jet that is visible in radio images (core) and the black hole is still a matter of debate. Only very-long-baseline interferometry observations resolve the innermost compact regions of the radio jet. Those can access the jet base, and combining data at different wavelenghts, address the physical parameters of the outflow from its emission. We have performed an accurate analysis of the frequency-dependent shift of the VLBI core location for a multi-wavelength set of images of the blazar CTA 102 including data from 6 cm down to 3 mm. The measure of the position of the central black hole, with mass $sim 10^{8.93},M_odot$, in the blazar CTA 102 reveals a distance of $sim 8times10^4$ gravitational radii to the 86 GHz core, in agreement with similar measures obtained for other blazars and distant radio galaxies, and in contrast with recent results for the case of nearby radio galaxies, which show distances between the black hole and the radio core that can be two orders of magnitude smaller.
61 - C. S. Chang , E. Ros , M. Kadler 2011
The origin of the high-energy emission of blazars is still a matter of debate. To investigate the emission mechanism of extragalactic outflows and to pin down the location of the emission, we have constructed a broadband spectral energy distribution (SED) database covering from the radio to the gamma-ray band for the complete MOJAVE sample, which consists of 135 relativistically beamed AGN with well-studied parsec-scale jets. Typically, the broadband SEDs of blazars shows a double-humped profile. It is believed that the lower-energy hump is due to synchrotron emission from the radio jet, and the higher-energy hump is generated by i) inverse-Compton upscattered seed photons (leptonic), ii) proton-induced shower (hadronic). Combining the results of high-resolution VLBI observations and the gamma-ray properties of the MOJAVE sources, we attempt to reveal the origin of the high-energy emission in relativistic jets, and search for correlations between VLBI and high-energy properties.
91 - C. M. Fromm 2010
The blazar CTA 102 underwent a major radio flare in April 2006. We used several 15 GHz VLBI observations from the MOJAVE program to investigate the influence of this extreme event on jet kinematics. The result of modeling and analysis lead to the sug gestion of an interaction between traveling and standing shocks 0.2 mas away from the VLBI core.
71 - C.M. Fromm 2010
The radio light curve and spectral evolution of the blazar CTA 102 during its 2006 outburst can be rather well explained by the standard shock-in-jet model. The results of a pixel-to-pixel spectral analysis of multi-frequency VLBI images, together wi th kinematics derived from the MOJAVE survey lead to the picture of an over-pressured jet with respect to the ambient medium. The interaction of a traveling shock wave with a standing one is a possible scenario which could explain the observed spectral behaviour
65 - C. S. Chang , E. Ros , M. Kadler 2010
We are constructing the broadband SED catalog of the MOJAVE sample from the radio to the gamma-ray band using MOJAVE, Swift UVOT/XRT/BAT, and Fermi/LAT data, in order to understand the emission mechanism of extragalactic outflows and to investigate t he site of high-energy emission in AGN. Since the launch of Fermi gamma-ray Space Telescope in August 2008, two thirds of the MOJAVE sources have been detected by Fermi/LAT. Combining the results of high-resolution VLBI, X-ray, and gamma-ray observations of the jet-dominated AGN sample, we want to pin down the origin of high-energy emission in relativistic jets. Here we present our overall project and preliminary results for 6 selected sources.
A bright feature 80 pc away from the core in the powerful jet of M87 shows highly unusual properties. Earlier radio, optical and X-ray observations have shown that this feature, labeled HST-1, is superluminal, and is possibly connected with the TeV f lare detected by HESS in 2005. It has been claimed that this feature might have a blazar nature, due to these properties. To examine the possible blazar-like nature of HST-1, we analyzed lambda 2 cm VLBA archival data from dedicated full-track observations and the 2 cm survey/MOJAVE VLBI monitoring programs obtained between 2000 and 2009. Applying VLBI wide-field imaging techniques, the HST-1 region was imaged at milliarcsecond resolution. Here we present the first 2 cm VLBI detection of this feature in observations from early 2003 to early 2007, and analyze its evolution over this time. Using the detections of HST-1, we find that the projected apparent speed is 0.61 +/- 0.31 c. A comparison of the VLA and VLBA flux densities of this feature indicate that is mostly resolved on molliarcsecond scales. This feature is optically thin between lambda 2 cm and lambda 20 cm. We do not find evidence of a blazar nature for HST-1.
MOJAVE is a VLBI program which monitors a statistically complete, radio-selected sample of 135 relativistically beamed, flat-spectrum active galactic nuclei for over more than a decade. In order to understand the high-energy behavior of this radio co mplete sample, we are performing Swift fill-in observations on the complete MOJAVE-I sample since 2007. The complete study of the spectral energy distribution from radio to X-ray bands on this radio-selected sample will provide us an opportunity to understand the nature of AGN. Here we present the preliminary results of the spectral energy distributions of six gamma-quiet or faint sources from this project: NRAO 140, PKS 0403-13, PKS B0422+004, PKS 0823+033, 3C 309.1, and 3C 380.
108 - C. S. Chang 2009
The radio-loud active galactic nucleus in M 87 hosts a powerful jet fueled by a super-massive black hole in its center. A bright feature 80 pc away from the M 87 core has been reported to show superluminal motions, and possibly to be connected with a TeV flare observed around 2005. To complement these studies and to understand the nature of this feature, we analyzed 2 cm VLBI data from 15 observing runs between 2000 and 2009. This feature is successfully detected at the milli-Jansky level from 2003 to 2007. Our detections show that its milli-arcsecond structure appears to be extended with a steep spectrum, and no compact or rapidly moving features are observed. Our results do not favor a blazar scenario for this feature.
A bright feature 100 pc away from the core in the powerful jet of M 87 shows mysterious properties. Earlier radio, optical and X-ray observations have shown that this feature, labelled HST-1, is superluminal, and is possibly connected with the TeV fl are detected by HESS in 2005. To examine the possible blazar-like nature of HST-1, we analyzed 2 cm VLBA data from dedicated full-track observations and the 2 cm survey/MOJAVE VLBI monitoring programs observed from 2000 to 2008. Applying wide-field imaging techniques, the HST-1 region was imaged at milliarcsecond resolutions. Here we present the first 15 GHz VLBI detection of this feature and discuss the connection between our radio findings and the TeV detection.
The radio loud galaxy NGC 1052 is being studied in an intensive multi-band campaign including X-ray brigthness monitoring and spectroscopic observations, single-dish radio brightness monitoring at centimetre wavelengths, and a high-frequency very-lon g-baseline interferometry monitoring program. Here we present a progress report on our studies from this program. The final goal of our observations is to relate the findings from the high-resolution radio images with the observed variations in the X-ray regime, to address the accretion processes and their relationship with the radio jet activity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا