ﻻ يوجد ملخص باللغة العربية
A bright feature 80 pc away from the core in the powerful jet of M87 shows highly unusual properties. Earlier radio, optical and X-ray observations have shown that this feature, labeled HST-1, is superluminal, and is possibly connected with the TeV flare detected by HESS in 2005. It has been claimed that this feature might have a blazar nature, due to these properties. To examine the possible blazar-like nature of HST-1, we analyzed lambda 2 cm VLBA archival data from dedicated full-track observations and the 2 cm survey/MOJAVE VLBI monitoring programs obtained between 2000 and 2009. Applying VLBI wide-field imaging techniques, the HST-1 region was imaged at milliarcsecond resolution. Here we present the first 2 cm VLBI detection of this feature in observations from early 2003 to early 2007, and analyze its evolution over this time. Using the detections of HST-1, we find that the projected apparent speed is 0.61 +/- 0.31 c. A comparison of the VLA and VLBA flux densities of this feature indicate that is mostly resolved on molliarcsecond scales. This feature is optically thin between lambda 2 cm and lambda 20 cm. We do not find evidence of a blazar nature for HST-1.
A bright feature 100 pc away from the core in the powerful jet of M 87 shows mysterious properties. Earlier radio, optical and X-ray observations have shown that this feature, labelled HST-1, is superluminal, and is possibly connected with the TeV fl
We investigate the total flux density, spectral, polarization, and Faraday rotation variability of HST-1 in the M87 jet during the outburst from 2003 to 2007 through multi-epoch VLA observations at 8, 15, and 22 GHz. Contrary to the general case for
The radio-loud active galactic nucleus in M 87 hosts a powerful jet fueled by a super-massive black hole in its center. A bright feature 80 pc away from the M 87 core has been reported to show superluminal motions, and possibly to be connected with a
The relativistic jet in M87 offers a unique opportunity for understanding the detailed jet structure and emission processes due to its proximity. In particular, the peculiar jet region HST-1 at ~1 arcsecond (or 80 pc, projected) from the nucleus has
To obtain a better understanding of the location and mechanisms for the production of the gamma-ray emission in jets of AGN we present a detailed study of the HST-1 structure, 0.8 arcsec downstream the jet of M87, previously identified as a possible