ترغب بنشر مسار تعليمي؟ اضغط هنا

The Broadband Spectral Energy Distribution of the MOJAVE Sample

108   0   0.0 ( 0 )
 نشر من قبل Chin-Shin Chang
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We are constructing the broadband SED catalog of the MOJAVE sample from the radio to the gamma-ray band using MOJAVE, Swift UVOT/XRT/BAT, and Fermi/LAT data, in order to understand the emission mechanism of extragalactic outflows and to investigate the site of high-energy emission in AGN. Since the launch of Fermi gamma-ray Space Telescope in August 2008, two thirds of the MOJAVE sources have been detected by Fermi/LAT. Combining the results of high-resolution VLBI, X-ray, and gamma-ray observations of the jet-dominated AGN sample, we want to pin down the origin of high-energy emission in relativistic jets. Here we present our overall project and preliminary results for 6 selected sources.



قيم البحث

اقرأ أيضاً

665 - Janet Torrealba 2011
We present an optical spectroscopic atlas at intermediate resolution (8-15A) for 123 core-dominated radio-loud active galactic nuclei with relativistic jets, drawn from the MOJAVE/2cm sample at 15GHz. It is the first time that spectroscopic and photo metric parameters for a large sample of such type of AGN are presented. The atlas includes spectral parameters for the emission lines Hb, [O III] 5007, Mg II 2798 and/or C IV 1549 and corresponding data for the continuum, as well as the luminosities and equivalent widths of the Fe II UV/optical. It also contains the homogeneous photometric information in the B-band for 242 sources of the sample, with a distribution peak at BJ=18.0 and a magnitude interval of 11.1< BJ <23.7.
(Abridged) We have conducted a detailed investigation of the broad-band spectral properties of the gamma-ray selected blazars of the Fermi LAT Bright AGN Sample (LBAS). By combining our accurately estimated Fermi gamma-ray spectra with Swift, radio, infra-red, optical and other hard X-ray/gamma-ray data, collected within three months of the LBAS data taking period, we were able to assemble high-quality and quasi-simultaneous Spectral Energy Distributions (SED) for 48 LBAS blazars.The SED of these gamma-ray sources is similar to that of blazars discovered at other wavelengths, clearly showing, in the usual Log $ u $ - Log $ u$ F$_ u$ representation, the typical broad-band spectral signatures normally attributed to a combination of low-energy synchrotron radiation followed by inverse Compton emission of one or more components. We have used these SEDs to characterize the peak intensity of both the low and the high-energy components. The results have been used to derive empirical relationships that estimate the position of the two peaks from the broad-band colors (i.e. the radio to optical and optical to X-ray spectral slopes) and from the gamma-ray spectral index. Our data show that the synchrotron peak frequency $ u_p^S$ is positioned between 10$^{12.5}$ and 10$^{14.5}$ Hz in broad-lined FSRQs and between $10^{13}$ and $10^{17}$ Hz in featureless BL Lacertae objects.We find that the gamma-ray spectral slope is strongly correlated with the synchrotron peak energy and with the X-ray spectral index, as expected at first order in synchrotron - inverse Compton scenarios. However, simple homogeneous, one-zone, Synchrotron Self Compton (SSC) models cannot explain most of our SEDs, especially in the case of FSRQs and low energy peaked (LBL) BL Lacs. (...)
We have studied the SED of the quasar LBQS 0102-2713. The available multiwavelength data are one optical spectrum between 3200 and 7400 A, 7 HST FOS spectra between 1700 and 2300 A, one GALEX NUV flux density and a K_S magnitude obtained from NED, an d 3 public ROSAT PSPC pointed observations in the 0.1$-$2.4 keV energy band. The alpha_ox values obtained are -2.3 and -2.2, respectively, comparable to BAL quasars. The ROSAT photon index is 6.0+-1.3. The 2500 A luminosity density is about a factor of 10 higher compared to the mean of the most luminous SDSS quasars. We argue that the object might be indicative for a new class of quasars with an unusual combination in their UV-, X-ray, and N_H properties.
We have carried out a detailed modeling of the dust Spectral Energy Distribution (SED) of the nearby, starbursting dwarf galaxy NGC 4214. A key point of our modeling is that we distinguish the emission from (i) HII regions and their associated photod issociation regions (PDRs) and (ii) diffuse dust. For both components we apply templates from the literature calculated with a realistic geometry and including radiation transfer. The large amount of existing data from the ultraviolet (UV) to the radio allows the direct measurement of most of the input parameters of the models. We achieve a good fit for the total dust SED of NGC 4214. In the present contribution we describe the available data, the data reduction and the determination of the model parameters, whereas a description of the general outline of our work is presented in the contribution of Lisenfeld et al. in this volume.
Spectral energy distributions (SEDs) of the central few tens of parsec region of some of the nearest, most well studied, active galactic nuclei (AGN) are presented. These genuine AGN-core SEDs, mostly from Seyfert galaxies, are characterised by two m ain features: an IR bump with the maximum in the 2-10 micron range, and an increasing X-ray spectrum in the 1 to ~200 keV region. These dominant features are common to Seyfert type 1 and 2 objects alike. Type 2 AGN exhibit a sharp drop shortward of 2 micron, with the optical to UV region being fully absorbed, while type 1s show instead a gentle 2 micron drop ensued by a secondary, partially-absorbed optical to UV emission bump. Assuming the bulk of optical to UV photons generated in these AGN are reprocessed by dust and re-emitted in the IR in an isotropic manner, the IR bump luminosity represents >70% of the total energy output in these objects while the high energies above 20 keV are the second energetically important contribution. Galaxies selected by their warm IR colours, i.e. presenting a relatively-flat flux distribution in the 12 to 60 micron range have often being classified as AGN. The results from these high spatial resolution SEDs question this criterion as a general rule. It is found that the intrinsic shape of the IR SED of an AGN and inferred bolometric luminosity largely depart from those derived from large aperture data. AGN luminosities can be overestimated by up to two orders of magnitude if relying on IR satellite data. We find these differences to be critical for AGN luminosities below or about 10^{44} erg/s. Above this limit, AGNs tend to dominate the light of their host galaxy regardless of the aperture size used. We tentatively mark this luminosity as a threshold to identify galaxy-light- vs AGN- dominated objects.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا