ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper we suggest an approach to analyse the motion of a test particle in the spacetime of a global monopole within a $f(R)$-like modified gravity. The field equations are written in a more simplified form in terms of $F(R)=frac{df(R)}{dR}$. S ince we are dealing with a spherically symmetric problem, $F(R)$ is expressed as a radial function ${cal F}(r)equiv{F(R(r))}$. So, the choice of a specific form for $f(R)$ will be equivalent to adopt an Ansatz for ${cal F}(r)$. By choosing an explicit functional form for ${cal F}(r)$ we obtain the weak field solutions for the metric tensor, compute the time-like geodesics and analyse the motion of a massive test particle. An interesting feature is an emerging attractive force exerted by the monopole on the particle.
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a sphericall y symmetric system, we assume that $F(R)$ is a function of the radial coordinate only. Moreover, adopting the weak field approximation, we can provide all components of the metric tensor. A comparison with the corresponding results obtained in General Relativity and in the Brans-Dicke theory is also made.
We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green function associated with this physical system. We explicitly show that for points outside the monopoles core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ballpoint-pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole.
In this work we analise the electrostatic self-energy and self-force on a point-like electric charged particle induced by a global monopole spacetime considering a inner structure to it. In order to develop this analysis we calculate the three-dimens ional Green function associated with this physical system. We explicitly show that for points inside and outside the monopoles core the self-energy presents two distinct contributions. The first is induced by the geometry associated with the spacetime under consideration, and the second one is a correction due to the non-vanishing inner structure attributed to it. Considering specifically the ballpoint-pen model for the region inside, we were able to obtain exact expressions for the self-energies in the regions outside and inside the monopoles core.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا