ﻻ يوجد ملخص باللغة العربية
We analyze the induced self-energy and self-force on a scalar point-like charged test particle placed at rest in the spacetime of a global monopole admitting a general spherically symmetric inner structure to it. In order to develop this analysis we calculate the three-dimensional Green function associated with this physical system. We explicitly show that for points outside the monopoles core the scalar self-energy presents two distinct contributions. The first one is induced by the non-trivial topology of the global monopole considered as a point-like defect and the second is a correction induced by the non-vanishing inner structure attributed to it. For points inside the monopole, the self-energy also present a similar structure, where now the first contribution depends on the geometry of the spacetime inside. As illustrations of the general procedure adopted, two specific models, namely flower-pot and the ballpoint-pen, are considered for the region inside. For these two different situations, we were able to obtain exact expressions for the self-energies and self-forces in the regions outside and inside the global monopole.
In this work we analise the electrostatic self-energy and self-force on a point-like electric charged particle induced by a global monopole spacetime considering a inner structure to it. In order to develop this analysis we calculate the three-dimens
We study the vacuum polarisation effects of the Dirac fermionic field induced by a pointlike global monopole located in the cosmological de Sitter spacetime. First we derive the four orthonormal Dirac modes in this background. Using these modes, we t
We investigated the effects of the global monopole spacetime on the Dirac and Klein-Gordon relativistic quantum oscillators. In order to do this, we solve the Dirac and Klein-Gordon equations analytically and discuss the influence of this background
We have studied the induced one-loop energy-momentum tensor of a massive complex scalar field within the framework of nonperturbative quantum electrodynamics (QED) with a uniform electric field background on the Poincare patch of the two-dimensional
In this work, we investigate the quasinormal modes for a massive scalar field with a nonminimal coupling with gravity in the spacetime of a loop quantum black hole, known as the Self-Dual Black Hole. In this way, we have calculated the characteristic