ﻻ يوجد ملخص باللغة العربية
In this paper we suggest an approach to analyse the motion of a test particle in the spacetime of a global monopole within a $f(R)$-like modified gravity. The field equations are written in a more simplified form in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a spherically symmetric problem, $F(R)$ is expressed as a radial function ${cal F}(r)equiv{F(R(r))}$. So, the choice of a specific form for $f(R)$ will be equivalent to adopt an Ansatz for ${cal F}(r)$. By choosing an explicit functional form for ${cal F}(r)$ we obtain the weak field solutions for the metric tensor, compute the time-like geodesics and analyse the motion of a massive test particle. An interesting feature is an emerging attractive force exerted by the monopole on the particle.
In this paper we analyze the gravitational field of a global monopole in the context of $f(R)$ gravity. More precisely, we show that the field equations obtained are expressed in terms of $F(R)=frac{df(R)}{dR}$. Since we are dealing with a sphericall
The motion of spinning test particles around a traversable wormhole is investigated using the Mathisson Papapetrous Dixon equations, which couple the Riemann tensor with the antisymmetric tensor $S^{ab}$, related to the spin of the particle. Hence, w
We investigate a braneworld model generated by a global monopole in the context of Brans-Dicke gravity. After solving the dynamical equations we found a model capable to alleviate the so-called hierarchy problem. The obtained framework is described b
We study holographic superconductors in the Schwarzschild-AdS black hole with a global monopole through a charged complex scalar field. We calculate the condensates of the charged operators in the dual conformal field theories (CFTs) and discuss the
In the context of the recently proposed type-II minimally modified gravity theory, i.e. a metric theory of gravity with two local physical degrees of freedom that does not possess an Einstein frame, we study spherically symmetric vacuum solutions to