ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the topology of the spin-polarized charge density in bcc and fcc iron. While the total spin-density is found to possess the topology of the non-magnetic prototypical structures, in some cases the spin-polarized densities are characteri zed by unique topologies; for example, the spin-polarized charge densities of bcc and high-spin fcc iron are atypical of any known for non-magnetic materials. In these cases, the two spin-densities are correlated: the spin-minority electrons have directional bond paths with deep minima in the minority density, while the spin-majority electrons fill these holes, reducing bond directionality. The presence of two distinct spin topologies suggests that a well-known magnetic phase transition in iron can be fruitfully reexamined in light of these topological changes. We show that the two phase changes seen in fcc iron (paramagnetic to low-spin and low-spin to high-spin) are different. The former follows the Landau symmetry-breaking paradigm and proceeds without a topological transformation, while the latter also involves a topological catastrophe.
59 - J. Singal , A. Kogut , E. Jones 2015
We use surface brightness contour maps of nearby edge-on spiral galaxies to determine whether extended bright radio halos are common. In particular, we test a recent model of the spatial structure of the diffuse radio continuum by Subrahmanyan and Co wsik which posits that a substantial fraction of the observed high-latitude surface brightness originates from an extended Galactic halo of uniform emissivity. Measurements of the axial ratio of emission contours within a sample of normal spiral galaxies at 1500 MHz and below show no evidence for such a bright, extended radio halo. Either the Galaxy is atypical compared to nearby quiescent spirals or the bulk of the observed high-latitude emission does not originate from this type of extended halo.
The C-Band All-Sky Survey (C-BASS) is a project to map the full sky in total intensity and linear polarization at 5 GHz. The northern component of the survey uses a broadband single-frequency analogue receiver fitted to a 6.1-m telescope at the Owens Valley Radio Observatory in California, USA. The receiver architecture combines a continuous-comparison radiometer and a correlation polarimeter in a single receiver for stable simultaneous measurement of both total intensity and linear polarization, using custom-designed analogue receiver components. The continuous-comparison radiometer measures the temperature difference between the sky and temperature-stabilized cold electrical reference loads. A cryogenic front-end is used to minimize receiver noise, with a system temperature of $approx 30,$K in both linear polarization and total intensity. Custom cryogenic notch filters are used to counteract man-made radio frequency interference. The radiometer $1/f$ noise is dominated by atmospheric fluctuations, while the polarimeter achieves a $1/f$ noise knee frequency of 10 mHz, similar to the telescope azimuthal scan frequency.
Significant differences exist among literature for thermal conductivity of various systems computed using molecular dynamics simulation. In some cases, unphysical results, for example, negative thermal conductivity, have been found. Using GaN as an e xample case and the direct non-equilibrium method, extensive molecular dynamics simulations and Monte Carlo analysis of the results have been carried out to quantify the uncertainty level of the molecular dynamics methods and to identify the conditions that can yield sufficiently accurate calculations of thermal conductivity. We found that the errors of the calculations are mainly due to the statistical thermal fluctuations. Extrapolating results to the limit of an infinite-size system tend to magnify the errors and occasionally lead to unphysical results. The error in bulk estimates can be reduced by performing longer time averages using properly selected systems over a range of sample lengths. If the errors in the conductivity estimates associated with each of the sample lengths are kept below a certain threshold, the likelihood of obtaining unphysical bulk values becomes insignificant. Using a Monte-Carlo approach developed here, we have determined the probability distributions for the bulk thermal conductivities obtained using the direct method. We also have observed a nonlinear effect that can become a source of significant errors. For the extremely accurate results presented here, we predict a [0001] GaN thermal conductivity of 185 $rm{W/K cdot m}$ at 300 K, 102 $rm{W/K cdot m}$ at 500 K, and 74 $rm{W/K cdot m}$ at 800 K. Using the insights obtained in the work, we have achieved a corresponding error level (standard deviation) for the bulk (infinite sample length) GaN thermal conductivity of less than 10 $rm{W/K cdot m}$, 5 $rm{W/K cdot m}$, and 15 $rm{W/K cdot m}$ at 300 K, 500 K, and 800 K respectively.
We describe the development of two circularly symmetric antennas with high polarization purity and low spillover. Both were designed to be used in an all-sky polarization and intensity survey at 5 GHz (the C-Band All-Sky Survey, C-BASS). The survey r equirements call for very low levels of cross-polar leakage and far-out sidelobes. Two different existing antennas, with 6.1-m and 7.6-m diameter primaries, were adapted by replacing the feed and secondary optics, resulting in identical beam performances of 0.73deg FWHM, cross-polarization better than -50 dB, and far-out sidelobes below -70 dB. The polarization purity was realized by using a symmetric low-loss dielectric foam support structure for the secondary mirror, avoiding the need for secondary support struts. Ground spill-over was largely reduced by using absorbing baffles around the primary and secondary mirrors, and by the use of a low-sidelobe profiled corrugated feedhorn. The 6.1-m antenna and receiver have been completed and test results show that the optics meet their design goals.
We describe an upgrade to the Cosmic Background Imager instrument to increase its surface brightness sensitivity at small angular scales. The upgrade consisted of replacing the thirteen 0.9-m antennas with 1.4-m antennas incorporating a novel combina tion of design features, which provided excellent sidelobe and spillover performance for low manufacturing cost. Off-the-shelf spun primaries were used, and the secondary mirrors were oversized and shaped relative to a standard Cassegrain in order to provide an optimum compromise between aperture efficiency and low spillover lobes. Low-order distortions in the primary mirrors were compensated for by custom machining of the secondary mirrors. The secondaries were supported on a transparent dielectric foam cone to minimize scattering. The antennas were tested in the complete instrument, and the beam shape and spillover noise contributions were as expected. We demonstrate the performance of the telescope and the inter-calibration with the previous system using observations of the Sunyaev-Zeldovich effect in the cluster Abell 1689. The enhanced instrument has been used to study the cosmic microwave background, the Sunyaev-Zeldovich effect and diffuse Galactic emission.
68 - C. E. Jones , C. Tycner , 2011
Focusing on B-emission stars, we investigated a set of H$alpha$ equivalent widths calculated from observed spectra acquired over a period of about 4 years from 2003 to 2007. During this time, changes in equivalent width for our program stars were mon itored. We have found a simple statistical method to quantify these changes in our observations. This statistical test, commonly called the F ratio, involves calculating the ratio of the external and internal error. We show that the application of this technique can be used to place bounds on the degree of variability of Be stars. This observational tool provides a quantitative way to find Be stars at particular stages of variability requiring relatively little observational data.
We predict a quantum phase transition in fcc Ca under hydrostatic pressure. Using density functional theory, we find at pressures below 80 kbar, the topology of the electron charge density is characterized by nearest neighbor atoms connected through bifurcated bond paths and deep minima in the octahedral holes. At pressures above 80 kbar, the atoms bond through non-nuclear maxima that form in the octahedral holes. This topological change in the charge density softens the C elastic modulus of fcc Ca, while C$_{44}$ remains unchanged. We propose an order parameter based on applying Morse theory to the charge density, and we show that near the critical point it follows the expected mean-field scaling law with reduced pressure.
130 - J. R. Allison 2010
We present a parameterized model of the intra-cluster medium that is suitable for jointly analysing pointed observations of the Sunyaev-Zeldovich (SZ) effect and X-ray emission in galaxy clusters. The model is based on assumptions of hydrostatic equi librium, the Navarro, Frenk and White (NFW) model for the dark matter, and a softened power law profile for the gas entropy. We test this entropy-based model against high and low signal-to-noise mock observations of a relaxed and recently-merged cluster from N-body/hydrodynamic simulations, using Bayesian hyper-parameters to optimise the relative statistical weighting of the mock SZ and X-ray data. We find that it accurately reproduces both the global values of the cluster temperature, total mass and gas mass fraction (fgas), as well as the radial dependencies of these quantities outside of the core (r > kpc). For reference we also provide a comparison with results from the single isothermal beta model. We confirm previous results that the single isothermal beta model can result in significant biases in derived cluster properties.
Within the last 10 years, long-baseline optical interferometry (LBOI) has benefited significantly from increased sensitivity, spatial resolution, and spectral resolution, e.g., measuring the diameters and asymmetries of single stars, imaging/fitting the orbits of multiple stars, modeling Be star disks, and modeling AGN nuclei. Similarly, polarimetry has also yielded excellent astrophysical results, e.g., characterizing the atmospheres and shells of red giants/supergiants, modeling the envelopes of AGB stars, studying the morphology of Be stars, and monitoring the short- and long- term behavior of AGNs. The next logical evolutionary step in instrumentation is to combine LBOI with polarimetry, which is called optical interferometric polarimetry (OIP). In other words, measurements of spatial coherence are performed simultaneously with measurements of coherence between orthogonal polarization states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا