ترغب بنشر مسار تعليمي؟ اضغط هنا

201 - F. Gagnon-Moisan 2012
Isospin e ffects on multifragmentation properties were studied thanks to nuclear collisions between di fferent isotopes of xenon beams and tin targets. It is shown that, in central collisions leading to multifragmentation, the mean number of fragment s and their mean kinetic energy increase with the neutron-richness of the total system. Comparisons with a stochastic transport model allow to attribute the multiplicity increase to the multifragmentation stage, before secondary decay. The total charge bound in fragments is proposed as an alternate variable to quantify preequilibrium emission and to investigate symmetry energy e ffects.
69 - E. Galichet 2010
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transpor t model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 AM{} is estimated to 130$pm$10 fm/$c$.
75 - E. Galichet (IPNO , Cnam , LNS 2008
We study isospin effects in semi-peripheral collisions above the Fermi energy by considering the symmetric $^{58}Ni$ + $^{58}Ni$ and the asymmetric reactions $^{58}Ni$ + $^{197}Au$ over the incident energy range 52-74 A MeV. A microscopic transport m odel with two different parameterizations of the symmetry energy term is used to investigate the isotopic content of pre-equilibrium emission and the N/Z diffusion process. Simulations are also compared to experimental data obtained with the INDRA array and bring information on the degree of isospin equilibration observed in Ni + Au collisions. A better overall agreement between data and simulations is obtained when using a symmetry term which linearly increases with nuclear density.
407 - E. Galichet 2008
Isospin diffusion in semi-peripheral collisions is probed as a function of the dissipated energy by studying two systems $^{58}Ni$ + $^{58}Ni$ and $^{58}Ni$ + $^{197}Au$, over the incident energy range 52-74AM. A close examination of the multipliciti es of light products in the forward part of phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا