ترغب بنشر مسار تعليمي؟ اضغط هنا

New isospin e ffects in central heavy-ion collisions at Fermi energies

258   0   0.0 ( 0 )
 نشر من قبل Marie-France Rivet
 تاريخ النشر 2012
  مجال البحث
والبحث باللغة English
 تأليف F. Gagnon-Moisan




اسأل ChatGPT حول البحث

Isospin e ffects on multifragmentation properties were studied thanks to nuclear collisions between di fferent isotopes of xenon beams and tin targets. It is shown that, in central collisions leading to multifragmentation, the mean number of fragments and their mean kinetic energy increase with the neutron-richness of the total system. Comparisons with a stochastic transport model allow to attribute the multiplicity increase to the multifragmentation stage, before secondary decay. The total charge bound in fragments is proposed as an alternate variable to quantify preequilibrium emission and to investigate symmetry energy e ffects.



قيم البحث

اقرأ أيضاً

Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the isospin effect in peripheral heavy-ion collisions has been investigated thoroughly. A coalescence approach is used for recognizing the primary fragments formed in nucleus-nucleus collisions. The secondary decay process of the fragments is described by the statistical code, GEMINI. Production mechanism and isospin effect of the projectile-like and target-like fragments are analyzed with the combined approach. It is found that the isospin migration from the high-isospin density to the low-density matter takes place in the neutron-rich nuclear reactions, i.e., $^{48}$Ca+$^{208}$Pb, $^{86}$Kr+$^{48}$Ca/$^{208}$Pb/$^{124}$Sn, $^{136}$Xe+$^{208}$Pb, $^{124}$Sn+$^{124}$Sn and $^{136}$Xe+$^{136}$Xe. A hard symmetry energy is available for creating the neutron-rich fragments, in particular in the medium-mass region. The isospin effect of the neutron to proton (n/p) ratio of the complex fragments is reduced once including the secondary decay process. However, a soft symmetry energy enhances the n/p ratio of the light particles, in particular at the kinetic energies above 15 MeV/nucleon.
Isotopically resolved fragments with Z<=20 have been studied with high resolution telescopes in a test run for the FAZIA collaboration. The fragments were produced by the collision of a 84Kr beam at 35 MeV/nucleon with a n-rich (124Sn) and a n-poor ( 112Sn) target. The fragments, detected close to the grazing angle, are mainly emitted from the phase-space region of the projectile. The fragment isotopic content clearly depends on the n-richness of the target and it is a direct evidence of isospin diffusion between projectile and target. The observed enhanced neutron richness of light fragments emitted from the phase-space region close to the center of mass of the system can be interpreted as an effect of isospin drift in the diluted neck region.
Peripheral and semi-peripheral collisions have been studied in the system 93Nb+93Nb at 38 AMeV. The evaporative and midvelocity components of the light charged particle and intermediate mass fragment emissions have been carefully disentangled. In thi s way it was possible to obtain the average amount not only of charge and mass, but also of energy, pertaining to the midvelocity emission, as a function of an impact parameter estimator. This emission has a very important role in the overall balance of the reaction, as it accounts for a large fraction of the emitted mass and for more than half of the dissipated energy. As such, it may give precious clues on the microscopic mechanism of energy transport from the interaction zone toward the target and projectile remnants.
A systematic investigation of the average multiplicities of light charged particles and intermediate mass fragments emitted in peripheral and semiperipheral collisions is presented as a function of the beam energy, violence of the collision and mass of the system. The data have been collected with the Fiasco setup in the reactions 93Nb+93Nb at 17, 23, 30, 38AMeV and 116Sn+116Sn at 30, 38AMeV. The midvelocity emission has been separated from the emission of the projectile-like fragment. This last component appears to be compatible with an evaporation from an equilibrated source at normal density, as described by the statistical code Gemini at the appropriate excitation energy. On the contrary, the midvelocity emission presents remarkable differences for what concerns both the dependence of the multiplicities on the energy deposited in the midvelocity region and the isotopic composition of the emitted light charged particles.
117 - P. Napolitani , M. Colonna 2015
Descriptions of heavy-ion collisions at Fermi energies require to take into account in-medium dissipation and phase-space fluctuations. The interplay of these correlations with the one-body collective behaviour determines the properties (kinematics a nd fragment production) and the variety of mechanisms (from fusion to neck formation and multifragmentation) of the exit channel. Starting from fundamental concepts tested on nuclear matter, we build up a microscopic description which addresses finite systems and applies to experimental observables.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا