ترغب بنشر مسار تعليمي؟ اضغط هنا

Isospin diffusion in semi-peripheral $^{58}Ni$ + $^{197}Au$ collisions at intermediate energies (I): Experimental results

466   0   0.0 ( 0 )
 نشر من قبل Marie-France Rivet
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف E. Galichet




اسأل ChatGPT حول البحث

Isospin diffusion in semi-peripheral collisions is probed as a function of the dissipated energy by studying two systems $^{58}Ni$ + $^{58}Ni$ and $^{58}Ni$ + $^{197}Au$, over the incident energy range 52-74AM. A close examination of the multiplicities of light products in the forward part of phase space clearly shows an influence of the isospin of the target on the neutron richness of these products. A progressive isospin diffusion is observed when collisions become more central, in connection with the interaction time.



قيم البحث

اقرأ أيضاً

127 - E. Galichet (IPNO , Cnam , LNS 2008
We study isospin effects in semi-peripheral collisions above the Fermi energy by considering the symmetric $^{58}Ni$ + $^{58}Ni$ and the asymmetric reactions $^{58}Ni$ + $^{197}Au$ over the incident energy range 52-74 A MeV. A microscopic transport m odel with two different parameterizations of the symmetry energy term is used to investigate the isotopic content of pre-equilibrium emission and the N/Z diffusion process. Simulations are also compared to experimental data obtained with the INDRA array and bring information on the degree of isospin equilibration observed in Ni + Au collisions. A better overall agreement between data and simulations is obtained when using a symmetry term which linearly increases with nuclear density.
128 - E. Galichet 2010
Isospin diffusion is probed as a function of the dissipated energy by studying two systems $^{58}$Ni+$^{58}$Ni and $^{58}$Ni+$^{197}$Au, over the incident energy range 52-74AM. Experimental data are compared with the results of a microscopic transpor t model with two different parameterizations of the symmetry energy term. A better overall agreement between data and simulations is obtained when using a symmetry term with a potential part linearly increasing with nuclear density. The isospin equilibration time at 52 AM{} is estimated to 130$pm$10 fm/$c$.
124 - Zhao-Qing Feng 2021
The dynamics of light hypernuclei and nuclear clusters produced in $^{197}$Au+$^{197}$Au collisions has been investigated thoroughly with a microscopic transport model. All possible channels of hyperon production and transportation of hyperons in nuc lear medium are implemented into the model. The light complex fragments are recognized with the Wigner density approach at the stage of freeze out in nuclear collisions. The isospin diffusion in the collisions is responsible for the neutron-rich cluster formation. The collective flows of nuclear clusters are consistent with the experimental data from FOPI collaboration. It is found that the influence of the hyperon-nucleon potential on the free hyperons is negligible, but available for the light hypernuclide formation. The directed and elliptic flows of $^{3}_{Lambda}$H and $^{4}_{Lambda}$H at incident energies of 2, 2.5, 3, 3.5 and 4 GeV/nucleon are investigated thoroughly and manifest the same structure with the nuclear clusters. The hypernuclear yields are produced in a wide rapidity and momentum regime with increasing the beam energy.
Within the framework of the Lanzhou quantum molecular dynamics (LQMD) transport model, the isospin effect in peripheral heavy-ion collisions has been investigated thoroughly. A coalescence approach is used for recognizing the primary fragments formed in nucleus-nucleus collisions. The secondary decay process of the fragments is described by the statistical code, GEMINI. Production mechanism and isospin effect of the projectile-like and target-like fragments are analyzed with the combined approach. It is found that the isospin migration from the high-isospin density to the low-density matter takes place in the neutron-rich nuclear reactions, i.e., $^{48}$Ca+$^{208}$Pb, $^{86}$Kr+$^{48}$Ca/$^{208}$Pb/$^{124}$Sn, $^{136}$Xe+$^{208}$Pb, $^{124}$Sn+$^{124}$Sn and $^{136}$Xe+$^{136}$Xe. A hard symmetry energy is available for creating the neutron-rich fragments, in particular in the medium-mass region. The isospin effect of the neutron to proton (n/p) ratio of the complex fragments is reduced once including the secondary decay process. However, a soft symmetry energy enhances the n/p ratio of the light particles, in particular at the kinetic energies above 15 MeV/nucleon.
63 - P.M.Milazzo , G.Vannini , M.Sisto 2000
The $^{58}Ni+^{58}Ni$ reaction at 30 MeV/nucleon has been experimentally investigated at the Superconducting Cyclotron of the INFN Laboratori Nazionali del Sud. In midperipheral collisions the production of massive fragments (4$le$Z$le$12), consisten t with the statistical fragmentation of the projectile-like residue and the dynamical formation of a neck, joining projectile-like and target-like residues, has been observed. The fragments coming from these different processes differ both in charge distribution and isotopic composition. In particular it is shown that these mechanisms leading to fragment production act contemporarily inside the same event.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا