ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. It is generally agreed that hydrogenation reactions dominate chemistry on grain surfaces in cold, dense molecular cores, saturating the molecules present in ice mantles. Aims. We present a study of the low temperature reactivity of solid pha se isocyanic acid (HNCO) with hydrogen atoms, with the aim of elucidating its reaction network. Methods. Fourier transform infrared spectroscopy and mass spectrometry were employed to follow the evolution of pure HNCO ice during bombardment with H atoms. Both multilayer and monolayer regimes were investigated. Results. The hydrogenation of HNCO does not produce detectable amounts of formamide (NH2CHO) as the major product. Experiments using deuterium reveal that deuteration of solid HNCO occurs rapidly, probably via cyclic reaction paths regenerating HNCO. Chemical desorption during these reaction cycles leads to loss of HNCO from the surface. Conclusions. It is unlikely that significant quantities of NH2CHO form from HNCO. In dense regions, however, deuteration of HNCO will occur. HNCO and DNCO will be introduced into the gas phase, even at low temperatures, as a result of chemical desorption.
At the low temperatures of interstellar dust grains, it is well established that surface chemistry proceeds via diffusive mechanisms of H atoms weakly bound (physisorbed) to the surface. Until recently, however, it was unknown whether atoms heavier t han hydrogen could diffuse rapidly enough on interstellar grains to react with other accreted species. In addition, models still require simple reduction as well as oxidation reactions to occur on grains to explain the abundances of various molecules. In this paper we investigate O-atom diffusion and reactivity on a variety of astrophysically relevant surfaces (water ice of three different morphologies, silicate, and graphite) in the 6.5 - 25 K temperature range. Experimental values were used to derive a diffusion law that emphasizes that O atoms diffuse by quantum mechanical tunnelling at temperatures as low as 6.5 K. The rate of diffusion on each surface, based on modelling results, were calculated and an empirical law is given as a function of the surface temperature. Relative diffusion rates are k_H2Oice > k_sil > k_graph >> k_expected. The implications of an efficient O-atom diffusion over astrophysically relevant time-scales are discussed. Our findings show that O atoms can scan any available reaction partners (e.g., either another H atom, if available, or a surface radical like O or OH) at a faster rate than that of accretion. Also, as dense clouds mature H2 becomes far more abundant than H and the O/H ratio grows, the reactivity of O atoms on grains is such that O becomes one of the dominant reactive partners together with H.
Any evolving system can change of state via thermal mechanisms (hopping a barrier) or via quantum tunneling. Most of the time, efficient classical mechanisms dominate at high temperatures. This is why an increase of the temperature can initiate the c hemistry. We present here an experimental investigation of O-atom diffusion and reactivity on water ice. We explore the 6-25 K temperature range at sub-monolayer surface coverages. We derive the diffusion temperature law and observe the transition from quantum to classical diffusion. Despite of the high mass of O, quantum tunneling is efficient even at 6 K. As a consequence, the solid-state astrochemistry of cold regions should be reconsidered and should include the possibility of forming larger organic molecules than previously expected.
The desorption characteristics of molecules on interstellar dust grains are important for modelling the behaviour of molecules in icy mantles and, critically, in describing the solid-gas interface. In this study, a series of laboratory experiments ex ploring the desorption of three small molecules from three astrophysically relevant surfaces are presented. The desorption of CO, O2 and CO2 at both sub-monolayer and multilayer coverages was investigated from non-porous water, crystalline water and silicate surfaces. Experimental data was modelled using the Polanyi-Wigner equation to produce a mathematical description of the desorption of each molecular species from each type of surface, uniquely describing both the monolayer and multilayer desorption in a single combined model. The implications of desorption behaviour over astrophysically relevant timescales are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا