ترغب بنشر مسار تعليمي؟ اضغط هنا

X-ray surface brightness fluctuations in the core of the Perseus Cluster are analyzed, using deep observations with the Chandra observatory. The amplitude of gas density fluctuations on different scales is measured in a set of radial annuli. It varie s from 8 to 12 per cent on scales of ~10-30 kpc within radii of 30-160 kpc from the cluster center and from 9 to 7 per cent on scales of ~20-30 kpc in an outer, 60-220 kpc annulus. Using a statistical linear relation between the observed amplitude of density fluctuations and predicted velocity, the characteristic velocity of gas motions on each scale is calculated. The typical amplitudes of the velocity outside the central 30 kpc region are 90-140 km/s on ~20-30 kpc scales and 70-100 km/s on smaller scales ~7-10 kpc. The velocity power spectrum is consistent with cascade of turbulence and its slope is in a broad agreement with the slope for canonical Kolmogorov turbulence. The gas clumping factor estimated from the power spectrum of the density fluctuations is lower than 7-8 per cent for radii ~30-220 kpc from the center, leading to a density bias of less than 3-4 per cent in the cluster core. Uncertainties of the analysis are examined and discussed. Future measurements of the gas velocities with the Astro-H, Athena and Smart-X observatories will directly measure the gas density-velocity perturbation relation and further reduce systematic uncertainties in these quantities.
The hot, X-ray-emitting intracluster medium (ICM) is the dominant baryonic constituent of clusters of galaxies. In the cores of many clusters, radiative energy losses from the ICM occur on timescales significantly shorter than the age of the system. Unchecked, this cooling would lead to massive accumulations of cold gas and vigorous star formation, in contradiction to observations. Various sources of energy capable of compensating these cooling losses have been proposed, the most promising being heating by the supermassive black holes in the central galaxies through inflation of bubbles of relativistic plasma. Regardless of the original source of energy, the question of how this energy is transferred to the ICM has remained open. Here we present a plausible solution to this question based on deep Chandra X-ray observatory data and a new data-analysis method that enables us to evaluate directly the ICM heating rate due to the dissipation of turbulence. We find that turbulent heating is sufficient to offset radiative cooling and indeed appears to balance it locally at each radius - it might therefore be the key element in resolving the gas cooling problem in cluster cores and, more universally, in atmospheres of X-ray gas-rich systems.
71 - I. Zhuravleva 2014
We address the problem of evaluating the power spectrum of the velocity field of the ICM using only information on the plasma density fluctuations, which can be measured today by Chandra and XMM-Newton observatories. We argue that for relaxed cluster s there is a linear relation between the rms density and velocity fluctuations across a range of scales, from the largest ones, where motions are dominated by buoyancy, down to small, turbulent scales: $(deltarho_k/rho)^2 = eta_1^2 (V_{1,k}/c_s)^2$, where $deltarho_k/rho$ is the spectral amplitude of the density perturbations at wave number $k$, $V_{1,k}^2=V_k^2/3$ is the mean square component of the velocity field, $c_s$ is the sound speed, and $eta_1$ is a dimensionless constant of order unity. Using cosmological simulations of relaxed galaxy clusters, we calibrate this relation and find $eta_1approx 1 pm 0.3$. We argue that this value is set at large scales by buoyancy physics, while at small scales the density and velocity power spectra are proportional because the former are a passive scalar advected by the latter. This opens an interesting possibility to use gas density power spectra as a proxy for the velocity power spectra in relaxed clusters, across a wide range of scales.
X-ray spectra from cores of galaxy clusters can be strongly distorted by resonant scattering of line photons, affecting metal abundance and gas velocity measurements. We introduce simulated spectral models that take into account the resonant scatteri ng effect, radial variations of thermodynamic properties of the hot gas, projection effects and small-scale isotropic gas motions. The key feature of the models is that all these effects are treated self-consistently for the whole spectrum, rather than for individual lines. The model spectra are publicly available and can be used for direct comparison with observed projected spectra. Comparison with the existing XMM-Newton and Chandra data of the Perseus Cluster shows that even though there is no strong evidence for the resonant scattering in Perseus, the low energy resolution of the X-ray CCDs is not sufficient to robustly distinguish spectral distortions due to the resonant scattering, different metal abundance profiles and different levels of gas turbulence. Future Astro-H data will resolve most of the problems we are facing with CCDs. With the help of our models, the resonant scattering analysis can be done self-consistently using the whole spectral information, constraining the level of gas turbulence already with a 100 ks observation with Astro-H.
We present a new method to identify and characterize the structure of the intracluster medium (ICM) in simulated galaxy clusters. The method uses the median of gas properties, such as density and pressure, which we show to be very robust to the prese nce of gas inhomogeneities. In particular, we show that the radial profiles of median gas properties are smooth and do not exhibit fluctuations at locations of massive clumps in contrast to mean and mode properties. It is shown that distribution of gas properties in a given radial shell can be well described by a log-normal PDF and a tail. The former corresponds to a nearly hydrostatic bulk component, accounting for ~99% of the volume, while the tail corresponds to high density inhomogeneities. We show that this results in a simple and robust separation of the diffuse and clumpy components of the ICM. The FWHM of the density distribution grows with radius and varies from ~0.15 dex in cluster centre to ~0.5 dex at 2r_500 in relaxed clusters. The small scatter in the width between relaxed clusters suggests that the degree of inhomogeneity is a robust characteristic of the ICM. It broadly agrees with the amplitude of density perturbations in the Coma cluster. We discuss the origin of ICM density variations in spherical shells and show that less than 20% of the width can be attributed to the triaxiality of the cluster gravitational potential. As a link to X-ray observations of real clusters we evaluated the ICM clumping factor with and without high density inhomogeneities. We argue that these two cases represent upper and lower limits on the departure of the observed X-ray emissivity from the median value. We find that the typical value of the clumping factor in the bulk component of relaxed clusters varies from ~1.1-1.2 at r_500 up to ~1.3-1.4 at r_200, in broad agreement with recent observations.
A simple method for calculating a low-resolution power spectrum from data with gaps is described. The method is a modification of the $Delta$-variance method previously described by Stutzki and Ossenkopf. A Mexican Hat filter is used to single out fl uctuations at a given spatial scale and the variance of the convolved image is calculated. The gaps in the image, defined by the mask, are corrected for by representing the Mexican Hat filter as a difference between two Gaussian filters with slightly different widths, convolving the image and mask with these filters and dividing the results before calculating the final filtered image. This method cleanly compensates for data gaps even if these have complicated shapes and cover a significant fraction of the data. The method was developed to deal with problematic 2D images, where irregular detector edges and masking of contaminating sources compromise the power spectrum estimates, but it can also be straightforwardly applied to 1D timing analysis or 3D data cubes from numerical simulations.
X-ray surface brightness fluctuations in the core ($650 times 650$ kpc) region of the Coma cluster observed with XMM-Newton and Chandra are analyzed using a 2D power spectrum approach. The resulting 2D spectra are converted to 3D power spectra of gas density fluctuations. Our independent analyses of the XMM-Newton and Chandra observations are in excellent agreement and provide the most sensitive measurements of surface brightness and density fluctuations for a hot cluster. We find that the characteristic amplitude of the volume filling density fluctuations relative to the smooth underlying density distribution varies from 7-10% on scales of $sim$500 kpc down to $sim$5% at scales $sim$ 30 kpc. On smaller spatial scales, projection effects smear the density fluctuations by a large factor, precluding strong limits on the fluctuations in 3D. On the largest scales probed (hundreds of kpc), the dominant contributions to the observed fluctuations most likely arise from perturbations of the gravitational potential by the two most massive galaxies in Coma, NGC4874 and NGC4889, and the low entropy gas brought to the cluster by an infalling group. Other plausible sources of X-ray surface brightness fluctuations are discussed, including turbulence, metal abundance variations, and unresolved sources. Despite a variety of possible origins for density fluctuations, the gas in the Coma cluster core is remarkably homogeneous on scales from $sim$ 500 to $sim$30 kpc.
We present the results of a systematic search for outbursts in the narrow positron annihilation line on various time scales (5x10^4 - 10^6 s) based on the SPI/INTEGRAL data obtained from 2003 to 2008. We show that no outbursts were detected with a st atistical significance higher than ~6 sigma for any of the time scales considered over the entire period of observations. We also show that, given the large number of independent trials, all of the observed spikes could be associated with purely statistical flux fluctuations and, in part, with a small systematic prediction error of the telescopes instrumental background. Based on the exposure achieved in ~6 yr of INTEGRAL operation, we provide conservative upper limits on the rate of outbursts with a given duration and flux in different parts of the sky.
We study power density spectra (PDS) of X-ray flux variability in binary systems where the accretion flow is truncated by the magnetosphere. PDS of accreting X-ray pulsars where the neutron star is close to the corotation with the accretion disk at t he magnetospheric boundary, have a distinct break/cutoff at the neutron star spin frequency. This break can naturally be explained in the perturbation propagation model, which assumes that at any given radius in the accretion disk stochastic perturbations are introduced to the flow with frequencies characteristic for this radius. These perturbations are then advected to the region of main energy release leading to a self-similar variability of X-ray flux P~f^{-1...-1.5}. The break in the PDS is then a natural manifestation of the transition from the disk to magnetospheric flow at the frequency characteristic for the accretion disk truncation radius (magnetospheric radius). The proximity of the PDS break frequency to the spin frequency in corotating pulsars strongly suggests that the typical variability time scale in accretion disks is close to the Keplerian one. In transient accreting X-ray pulsars characterized by large variations of the mass accretion rate during outbursts, the PDS break frequency follows the variations of the X-ray flux, reflecting the change of the magnetosphere size with the accretion rate. Above the break frequency the PDS steepens to ~f^{-2} law which holds over a broad frequency range. These results suggest that strong f^{-1...-1.5} aperiodic variability which is ubiquitous in accretion disks is not characteristic for magnetospheric flows.
An extraordinary recent development in astrophysics was the discovery of the fossil relationship between central black hole mass and the stellar mass of galactic bulges. The physical process underpinning this relationship has become known as feedback . The Chandra X-ray Observatory was instrumental in realizing the physical basis for feedback, by demonstrating a tight coupling between the energy released by supermassive black holes and the gaseous structures surrounding them. This white paper discusses how a great leap forward in X-ray collecting area and spectral resolution will allow a qualitatively new way of studying how feedback from black holes influenced the growth of structure.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا