ترغب بنشر مسار تعليمي؟ اضغط هنا

Search for Outbursts in the Narrow 511-keV Line from Compact Sources Based on INTEGRAL Data

92   0   0.0 ( 0 )
 نشر من قبل Sergey Tsygankov
 تاريخ النشر 2010
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the results of a systematic search for outbursts in the narrow positron annihilation line on various time scales (5x10^4 - 10^6 s) based on the SPI/INTEGRAL data obtained from 2003 to 2008. We show that no outbursts were detected with a statistical significance higher than ~6 sigma for any of the time scales considered over the entire period of observations. We also show that, given the large number of independent trials, all of the observed spikes could be associated with purely statistical flux fluctuations and, in part, with a small systematic prediction error of the telescopes instrumental background. Based on the exposure achieved in ~6 yr of INTEGRAL operation, we provide conservative upper limits on the rate of outbursts with a given duration and flux in different parts of the sky.

قيم البحث

اقرأ أيضاً

83 - G. De Cesare 2011
The first detection of a gamma ray line with an energy of about 500 keV from the center our Galaxy dates back to the early seventies. Thanks to the astrophysical application of high spectral resolution detectors, it was soon clear that this radiation was due to the 511 keV photons generated by electron-positron annihilation. Even though the physical process are known, the astrophysical origin of this radiation is still a mystery. The spectrometer SPI aboard the INTEGRAL gamma-ray satellite has been used to produce the first all-sky map in light of the 511 keV annihilation, but no direct evidence for 511 keV galactic compact objects has been found [...] We present the first deep IBIS 511 keV all-sky map, obtained by applying standard analysis to about 5 years of data. Possible 511 keV signals are also searched over hour-day-month timescales. The IBIS sensitivity at 511 keV depends on the detector quantum efficiency at this energy and on the background. Both these quantities were estimated in this work. We find no evidence of Galactic 511 keV point sources. With an exposure of 10 Ms in the center of the Galaxy, we estimate a $1.6 times 10^{-4},ph,cm^{-2},s^{-1}$ flux 2 sigma upper limit. A similar limit is given in a wide area in the Galactic center region with similar exposures. The IBIS 511 keV flux upper limits for microquasars and supernova remnants detected in the hard X domain ($E > 20, keV$) are also reported. Our results are consistent with a diffuse $e^{+}e^{-}$ annihilation scenario. If positrons are generated in compact objects, we expect that a significant fraction of them propagate in the interstellar medium before there are annihilated away from their birth places.
The first gamma-ray line originating from outside the solar system that was ever detected is the 511 keV emission from positron annihilation in the Galaxy. Despite 30 years of intense theoretical and observational investigation, the main sources of p ositrons have not been identified up to now. Observations in the 1990s with OSSE/CGRO showed that the emission is strongly concentrated towards the Galactic bulge. In the 2000s, the SPI instrument aboard ESAs INTEGRAL gamma-ray observatory allowed scientists to measure that emission across the entire Galaxy, revealing that the bulge/disk luminosity ratio is larger than observed in any other wavelength. This mapping prompted a number of novel explanations, including rather exotic ones (e.g. dark matter annihilation). However, conventional astrophysical sources, like type Ia supernovae, microquasars or X-ray binaries, are still plausible candidates for a large fraction of the observed total 511 keV emission of the bulge. A closer study of the subject reveals new layers of complexity, since positrons may propagate far away from their production sites, making it difficult to infer the underlying source distribution from the observed map of 511 keV emission. However, contrary to the rather well understood propagation of high energy (>GeV) particles of Galactic cosmic rays, understanding the propagation of low energy (~MeV) positrons in the turbulent, magnetized interstellar medium, still remains a formidable challenge. We review the spectral and imaging properties of the observed 511 keV emission and we critically discuss candidate positron sources and models of positron propagation in the Galaxy.
The signature of positron annihilation, namely the 511 keV $gamma$-ray line, was first detected coming from the direction of the Galactic center in the 1970s, but the source of Galactic positrons still remains a puzzle. The measured flux of the annih ilation corresponds to an intense steady source of positron production, with an annihilation rate on the order of $sim10^{43}$~e$^{+}$/s. The 511 keV emission is the strongest persistent Galactic $gamma$-ray line signal and it shows a concentration towards the Galactic center region. An additional low-surface brightness component is aligned with the Galactic disk; however, the morphology of the latter is not well constrained. The Compton Spectrometer and Imager (COSI) is a balloon-borne soft $gamma$-ray (0.2--5 MeV) telescope designed to perform wide-field imaging and high-resolution spectroscopy. One of its major goals is to further our understanding of Galactic positrons. COSI had a 46-day balloon flight in May--July 2016 from Wanaka, New Zealand, and here we report on the detection and spectral and spatial analyses of the 511 keV emission from those observations. To isolate the Galactic positron annihilation emission from instrumental background, we have developed a technique to separate celestial signals utilizing the COMPTEL Data Space. With this method, we find a 7.2$sigma$ detection of the 511 keV line. We find that the spatial distribution is not consistent with a single point source, and it appears to be broader than what has been previously reported.
We present a possible explanation of the recently observed 511 keV $gamma$-ray anomaly with a new ``millicharged fermion. The new fermion is light (${cal O}({rm MeV})$) but has never been observed by any collider experiments mainly because of its tin y electromagnetic charge $epsilon e$. We show that constraints from its relic density in the Universe and collider experiments allow a parameter range such that the 511 keV cosmic $gamma$-ray emission from the galactic bulge may be due to positron production from this millicharged fermion.
The imaging spectrometer SPI on board ESAs INTEGRAL observatory provides us with an unprecedented view of positron annihilation in our Galaxy. The first sky maps in the 511 keV annihilation line and in the positronium continuum from SPI showed a puzz ling concentration of annihilation radiation in the Galactic bulge region. By now, more than twice as many INTEGRAL observations are available, offering new clues to the origin of Galactic positrons. We present the current status of our analyses of this augmented data set. We now detect significant emission from outside the Galactic bulge region. The 511 keV line is clearly detected from the Galactic disk; in addition, there is a tantalizing hint at possible halo-like emission. The available data do not yet permit to discern whether the emission around the bulge region originates from a halo-like component or from a disk component that is very extended in latitude.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا