ترغب بنشر مسار تعليمي؟ اضغط هنا

We present for the first time a detailed study of the properties of molecular gas in metal-rich environments such as early-type galaxies (ETGs). We have explored Photon-Dominated Region (PDR) chemistry for a wide range of physical conditions likely t o be appropriate for these sources. We derive fractional abundances of the 20 most chemically reactive species as a function of the metallicity, as a function of the optical depth and for various volume number gas densities, Far-Ultra Violet (FUV) radiation fields and cosmic ray ionisation rates. We also investigate the response of the chemistry to the changes in $alpha-$element enhancement as seen in ETGs. We find that the fractional abundances of CS, H$_{2}$S, H$_{2}$CS, H$_{2}$O, H$_{3}$O$^{+}$, HCO$^{+}$ and H$_{2}$CN seem invariant to an increase of metallicity whereas C$^{+}$, CO, C$_{2}$H, CN, HCN, HNC and OCS appear to be the species most sensitive to this change. The most sensitive species to the change in the fractional abundance of $alpha-$elements are C$^{+}$, C, CN, HCN, HNC, SO, SO$_{2}$, H$_{2}$O and CS. Finally, we provide line brightness ratios for the most abundant species, especially in the range observable with ALMA. Discussion of favorable line ratios to use for the estimation of super-solar metallicities and $alpha$-elements are also provided.
We present the first observations of emission lines of CN(2-1), HCO$^{+}$(3-2) and C$_{2}$H(3-2) in the Perseus cluster. We observed at two positions: directly at the central galaxy, NGC 1275 and also at a position about 20$$ to the east where associ ated filamentary structure has been shown to have strong CO emission. Clear detections in CN and HCO$^{+}$ transitions and a weak detection of the C$_{2}$H transition were made towards NGC 1275, while weak detections of CN and HCO$^{+}$ were made towards the eastern filamentary structure. Crude estimates of the column densities and fractional abundances (mostly upper limits) as functions of an unknown rotational temperature were made to both sources. These observational data were compared with the outputs of thermal/chemical models previously published by citet{Baye10c} in an attempt to constrain the heating mechanisms in cluster gas. We find that models in which heating is dominated by cosmic rays can account for the molecular observations. This conclusion is consistent with that of citet{Ferl09} in their study of gas traced by optical and infrared radiation. The cosmic ray heating rate in the regions probed by molecular emissions is required to be at least two orders of magnitude larger than that in the Milky Way.
Molecular line observations may serve as diagnostics of the degree to which the number density of cosmic ray protons, having energies of 10s to 100s of MeVs each, is enhanced in starburst galaxies and galaxies with active nuclei. Results, obtained wi th the UCL_PDR code, for the fractional abundances of molecules as functions of the cosmic-ray induced ionisation rate, $zeta$, are presented. The aim is not to model any particular external galaxies. Rather, it is to identify characteristics of the dependencies of molecular abundances on $zeta$, in part to enable the development of suitable observational programmes for cosmic ray dominated regions (CRDRs) which will then stimulate detailed modelling. For a number density of hydrogen nuclei of of $10^4$ cm$^{-3}$, and high visual extinction, the fractional abundances of some species increase as $zeta$ increases to $10^{-14}$ s$^{-1}$, but for much higher values of $zeta$ the fractional abundances of all molecular species are significantly below their peak values. We show in particular that OH, H$_{2}$O, H$_{3}^{+}$, H$_{3}$O$^{+}$ and OH$^{+}$ attain large fractional abundances ($geqslant 10^{-8}$) for $zeta$ as large as $10^{-12}$ s$^{-1}$. HCO$^{+}$ is a poor tracer of CRDRs when $zeta > 10^{-13}$ s$^{-1}$. Sulphur-bearing species may be useful tracers of CRDRs gas in which $zeta sim 10^{-16}$ s$^{-1}$. Ammonia has a large fractional abundance for $zeta leqslant 10^{-16}$ s$^{-1}$ and nitrogen appears in CN-bearing species at significant levels as $zeta$ increases, even up to $sim 10^{-14}$ s$^{-1}$. In this paper, we also discuss our model predictions, comparing them to recent detections in both galactic and extragalactic sources. We show that they agree well, to a first approximation, with the observational constraints.
90 - E. Bayet , J. Yates , S. Viti 2010
We present a theoretical study of CS line profiles in archetypal hot cores. We provide estimates of line fluxes from the CS(1-0) to the CS(15-14) transitions and present the temporal variation of these fluxes. We find that textit{i)} the CS(1-0) tran sition is a better tracer of the Envelope of the hot core whereas the higher-J CS lines trace the ultra-compact core; textit{ii)} the peak temperature of the CS transitions is a good indicator of the temperature inside the hot core; textit{iii)} in the Envelope, the older the hot core the stronger the self-absorption of CS; textit{iv)} the fractional abundance of CS is highest in the innermost parts of the ultra-compact core, confirming the CS molecule as one of the best tracers of very dense gas.
280 - E. Bayet , Z. Awad , S. Viti 2010
We present a theoretical study of the deuterated species detectability in various types of extragalactic star-forming regions based on our predictions of chemical abundances. This work is motivated by the past and current attempts at observing deuter ated species in external galaxies such as NGC~253, IC~342 and the LMC. Here, we investigate the influence of the density, the temperature, the FUV radiation field, the cosmic ray ionisation, and the metallicity on the fractional abundances and D/H abundance ratios of about 20 deuterated species. Without modelling any particular source, we determined how the deuterium chemistry behaves in different physical environments such as starburst, cosmic-rays enhanced environments, low metallicity and high redshift galaxies. In general, our predicted column densities seem in good agreement with those derived from the current limited dataset of observations in external galaxies. We provide, for the first time, a list of key deuterated species whose abundances are high enough to be possibly detectable by the Atacama Large Millimeter Array (ALMA) and Herschel, as a function of galactic nuclear activity and redshift.
Optical emission is detected from filaments around the central galaxies of clusters of galaxies. These filaments have lengths of tens of kiloparsecs. The emission is possibly due to heating caused by the dissipation of mechanical energy and by cosmic ray induced ionisation. CO millimeter and submillimeter line emissions as well as H$_{2}$ infrared emission originating in such filaments surrounding NGC~1275, the central galaxy of the Perseus cluster, have been detected. Our aim is to identify those molecular species, other than CO, that may emit detectable millimeter and submillimeter line features arising in these filaments, and to determine which of those species will produce emissions that might serve as diagnostics of the dissipation and cosmic ray induced ionisation. The time-dependent UCL photon-dominated region modelling code was used in the construction of steady-state models of molecular filamentary emission regions at appropriate pressures, for a range of dissipation and cosmic ray induced ionisation rates and incident radiation fields.HCO$^+$ and C$_2$H emissions will potentially provide information about the cosmic ray induced ionisation rates in the filaments. HCN and, in particular, CN are species with millimeter and submillimeter lines that remain abundant in the warmest regions containing molecules. Detections of the galaxy cluster filaments in HCO$^{+}$, C$_{2}$H, and CN emissions and further detections of them in HCN emissions would provide significant constraints on the dissipation and cosmic ray induced ionisation rates.
333 - E. Bayet , R. Aladro , S. Martin 2009
We present a coherent and homogeneous multi-line study of the CS molecule in nearby (D$<$10Mpc) galaxies. We include, from the literature, all the available observations from the $J=1-0$ to the $J=7-6$ transitions towards NGC 253, NGC 1068, IC 342, H enize~2-10, M~82, the Antennae Galaxies and M~83. We have, for the first time, detected the CS(7-6) line in NGC 253, M~82 (both in the North-East and South-West molecular lobes), NGC 4038, M~83 and tentatively in NGC 1068, IC 342 and Henize~2-10. We use the CS molecule as a tracer of the densest gas component of the ISM in extragalactic star-forming regions, following previous theoretical and observational studies by Bayet et al. (2008a,b and 2009). In this first paper out of a series, we analyze the CS data sample under both Local Thermodynamical Equilibrium (LTE) and non-LTE (Large Velocity Gradient-LVG) approximations. We show that except for M~83 and Overlap (a shifted gas-rich position from the nucleus NGC 4039 in the Antennae Galaxies), the observations in NGC 253, IC 342, M~82-NE, M~82-SW and NGC 4038 are not well reproduced by a single set of gas component properties and that, at least, two gas components are required. For each gas component, we provide estimates of the corresponding kinetic temperature, total CS column density and gas density.
In this paper, we investigate the relevance of using the $^{12}$CO line emissions as indicators of star formation rates (SFR). For the first time, we present this study for a relatively large number of $^{12}$CO transitions (12) as well as over a lar ge interval in redshift (from z$sim$0 to z$sim$6). For the nearby sources (D$leq$10 Mpc), we have used homogeneous sample of $^{12}$CO data provided by Bayet et al. (2004, 2006), mixing observational and modelled line intensities. For higher-z sources (z $geq$ 1), we have collected $^{12}$CO observations from various papers and have completed the data set of line intensities with model predictions which we also present in this paper. Finally, for increasing the statistics, we have included recent $^{12}$CO(1-0) and $^{12}$CO(3-2) observations of intermediate-z sources. Linear regressions have been calculated for identifying the tightest SFR-$^{12}$CO line luminosity relationships. We show that the emph{total} $^{12}$CO, the $^{12}$CO(5-4), the $^{12}$CO(6-5) and the $^{12}$CO(7-6) luminosities are the best indicators of SFR (as measured by the far-infrared luminosity). Comparisons with theoretical approaches from Krumholz and Thompson (2007) and Narayanan et al. (2008) are also performed in this paper. Although in general agreement, the predictions made by these authors and the observational results we present here show small and interesting discrepancies. In particular, the slope of the linear regressions, for J$_{upper}geq$ 4 $^{12}$CO lines are not similar between theoretical studies and observations. On one hand, a larger high-J $^{12}$CO data set of observations might help to better agree with models, increasing the statistics. On the other hand, theoretical studies extended to high redshift sources might also reduce such discrepancies.
Photon-dominated regions (PDRs) are powerful molecular line emitters in external galaxies. They are expected in galaxies with high rates of massive star formation due to either starburst (SB) events or starburst coupled with active galactic nuclei (A GN) events. We have explored the PDR chemistry for a range of physical conditions representing a variety of galaxy types. Our main result is a demonstration of the sensitivity of the chemistry to changes in the physical conditions. We adopt crude estimates of relevant physical parameters for several galaxy types and use our models to predict suitable molecular tracers of those conditions. The set of recommended molecular tracers differs from that which we recommended for use in galaxies with embedded massive stars. Thus, molecular observations can in principle be used to distinguish between excitation by starburst and by SB+AGN in distant galaxies. Our recommendations are intended to be useful in preparing Herschel and ALMA proposals to identify sources of excitation in galaxies.
404 - E. Bayet , C. Lintott , S. Viti 2008
We present the first detection of CS in the Antennae galaxies towards the NGC 4038 nucleus, as well as the first detections of two high-J (5-4 and 7-6) CS lines in the center of M 82. The CS(7-6) line in M 82 shows a profile that is surprisingly diff erent to those of other low-J CS transitions we observed. This implies the presence of a separate, denser and warmer molecular gas component. The derived physical properties and the likely location of the CS(7-6) emission suggests an association with the supershell in the centre of M 82.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا