ﻻ يوجد ملخص باللغة العربية
Molecular line observations may serve as diagnostics of the degree to which the number density of cosmic ray protons, having energies of 10s to 100s of MeVs each, is enhanced in starburst galaxies and galaxies with active nuclei. Results, obtained with the UCL_PDR code, for the fractional abundances of molecules as functions of the cosmic-ray induced ionisation rate, $zeta$, are presented. The aim is not to model any particular external galaxies. Rather, it is to identify characteristics of the dependencies of molecular abundances on $zeta$, in part to enable the development of suitable observational programmes for cosmic ray dominated regions (CRDRs) which will then stimulate detailed modelling. For a number density of hydrogen nuclei of of $10^4$ cm$^{-3}$, and high visual extinction, the fractional abundances of some species increase as $zeta$ increases to $10^{-14}$ s$^{-1}$, but for much higher values of $zeta$ the fractional abundances of all molecular species are significantly below their peak values. We show in particular that OH, H$_{2}$O, H$_{3}^{+}$, H$_{3}$O$^{+}$ and OH$^{+}$ attain large fractional abundances ($geqslant 10^{-8}$) for $zeta$ as large as $10^{-12}$ s$^{-1}$. HCO$^{+}$ is a poor tracer of CRDRs when $zeta > 10^{-13}$ s$^{-1}$. Sulphur-bearing species may be useful tracers of CRDRs gas in which $zeta sim 10^{-16}$ s$^{-1}$. Ammonia has a large fractional abundance for $zeta leqslant 10^{-16}$ s$^{-1}$ and nitrogen appears in CN-bearing species at significant levels as $zeta$ increases, even up to $sim 10^{-14}$ s$^{-1}$. In this paper, we also discuss our model predictions, comparing them to recent detections in both galactic and extragalactic sources. We show that they agree well, to a first approximation, with the observational constraints.
We present a detailed theoretical study of the rotational excitation of CH$^+$ due to reactive and nonreactive collisions involving C$^+(^2P)$, H$_2$, CH$^+$, H and free electrons. Specifically, the formation of CH$^+$ proceeds through the reaction b
Aims: We aim at deriving the excitation conditions of the interstellar gas as well as the local FUV intensities in the molecular cloud surrounding NGC 3603 to get a coherent picture of how the gas is energized by the central stars. Methods: The NANTE
Water is the main constituent of interstellar ices, and it plays a key role in the evolution of many regions of the interstellar medium, from molecular clouds to planet-forming disks. In cold regions of the ISM, water is expected to be completely fro
We study the impact of cosmic rays (CRs) on the structure of virial shocks, using a large suite of high-resolution cosmological FIRE-2 simulations accounting for CR injection by supernovae. In massive ($M_{rm halo} gtrsim 10^{11},M_{odot}$), low-reds
We study the formation and evolution of the cosmic web, using the high-resolution CosmoGrid $Lambda$CDM simulation. In particular, we investigate the evolution of the large-scale structure around void halo groups, and compare this to observations of