ترغب بنشر مسار تعليمي؟ اضغط هنا

The technology of scintillating bolometers based on zinc molybdate (ZnMoO$_4$) crystals is under development within the LUMINEU project to search for 0$ u$2$beta$ decay of $^{100}$Mo with the goal to set the basis for large scale experiments capable to explore the inverted hierarchy region of the neutrino mass pattern. Advanced ZnMoO$_4$ crystal scintillators with mass of $sim$~0.3 kg were developed and Zn$^{100}$MoO$_4$ crystal from enriched $^{100}$Mo was produced for the first time by using the low-thermal-gradient Czochralski technique. One ZnMoO$_4$ scintillator and two samples (59 g and 63 g) cut from the enriched boule were tested aboveground at milli-Kelvin temperature as scintillating bolometers showing a high detection performance. The first results of the low background measurements with three ZnMoO$_4$ and two enriched detectors installed in the EDELWEISS set-up at the Modane Underground Laboratory (France) are presented.
The International Axion Observatory (IAXO) will be a forth generation axion helioscope. As its primary physics goal, IAXO will look for axions or axion-like particles (ALPs) originating in the Sun via the Primakoff conversion of the solar plasma phot ons. In terms of signal-to-noise ratio, IAXO will be about 4-5 orders of magnitude more sensitive than CAST, currently the most powerful axion helioscope, reaching sensitivity to axion-photon couplings down to a few $times 10^{-12}$ GeV$^{-1}$ and thus probing a large fraction of the currently unexplored axion and ALP parameter space. IAXO will also be sensitive to solar axions produced by mechanisms mediated by the axion-electron coupling $g_{ae}$ with sensitivity $-$for the first time$-$ to values of $g_{ae}$ not previously excluded by astrophysics. With several other possible physics cases, IAXO has the potential to serve as a multi-purpose facility for generic axion and ALP research in the next decade. In this paper we present the conceptual design of IAXO, which follows the layout of an enhanced axion helioscope, based on a purpose-built 20m-long 8-coils toroidal superconducting magnet. All the eight 60cm-diameter magnet bores are equipped with focusing x-ray optics, able to focus the signal photons into $sim 0.2$ cm$^2$ spots that are imaged by ultra-low-background Micromegas x-ray detectors. The magnet is built into a structure with elevation and azimuth drives that will allow for solar tracking for $sim$12 h each day.
We present new constraints on the couplings of axions and more generic axion-like particles using data from the EDELWEISS-II experiment. The EDELWEISS experiment, located at the Underground Laboratory of Modane, primarily aims at the direct detection of WIMPs using germanium bolometers. It is also sensitive to the low-energy electron recoils that would be induced by solar or dark matter axions. Using a total exposure of up to 448 kg.d, we searched for axion-induced electron recoils down to 2.5 keV within four scenarios involving different hypotheses on the origin and couplings of axions. We set a 95% CL limit on the coupling to photons $g_{Agamma}<2.13times 10^{-9}$ GeV$^{-1}$ in a mass range not fully covered by axion helioscopes. We also constrain the coupling to electrons, $g_{Ae} < 2.56times 10^{-11}$, similar to the more indirect solar neutrino bound. Finally we place a limit on $g_{Ae}times g_{AN}^{rm eff}<4.70 times 10^{-17}$, where $g_{AN}^{rm eff}$ is the effective axion-nucleon coupling for $^{57}$Fe. Combining these results we fully exclude the mass range $0.91,{rm eV}<m_A<80$ keV for DFSZ axions and $5.73,{rm eV}<m_A<40$ keV for KSVZ axions.
The EDELWEISS-II collaboration has completed a direct search for WIMP dark matter with an array of ten 400-g cryogenic germanium detectors in operation at the Laboratoire Souterrain de Modane. The combined use of thermal phonon sensors and charge col lection electrodes with an interleaved geometry enables the efficient rejection of gamma-induced radioactivity as well as near-surface interactions. A total effective exposure of 384 kg.d has been achieved, mostly coming from fourteen months of continuous operation. Five nuclear recoil candidates are observed above 20 keV, while the estimated background is 3.0 events. The result is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 4.4x10^-8 pb is excluded at 90%CL for a WIMP mass of 85 GeV. New constraints are also set on models where the WIMP-nucleon scattering is inelastic.
63 - E. Armengaud 2010
The EDELWEISS-II experiment uses cryogenic heat-and-ionization detectors in order to detect the rare interactions from possible WIMP dark matter particles on Germanium nuclei. Recently, new-generation detectors with an interleaved electrode geometry were developped and validated, enabling an outstanding rejection of gamma-rays and surface interactions. We present here preliminary results of a one-year WIMP search carried out with ten of such detectors in the Laboratoire Souterrain de Modane. A sensitivity to the spin-independent WIMP-nucleon cross-section of 5 times 10-8 pb was achieved using a 322 kg
This paper describes precise measurements of the thermal neutron flux in the LSM underground laboratory in proximity of the EDELWEISS-II dark matter search experiment together with short measurements at various other locations. Monitoring of the flux of thermal neutrons is accomplished using a mobile detection system with low background proportional counter filled with $^3$He. On average 75 neutrons per day are detected with a background level below 1 count per day (cpd). This provides a unique possibility of a day by day study of variations of the neutron field in a deep underground site. The measured average 4$pi$ neutron flux per cm$^{2}$ in the proximity of EDELWEISS-II is $Phi_{MB}=3.57pm0.05^{stat}pm0.27^{syst}times 10^{-6}$ neutrons/sec. We report the first experimental observation that the point-to-point thermal neutron flux at LSM varies by more than a factor two.
The EDELWEISS-II collaboration has performed a direct search for WIMP dark matter with an array of ten 400 g heat-and-ionization cryogenic detectors equipped with interleaved electrodes for the rejection of near-surface events. Six months of continuo us operation at the Laboratoire Souterrain de Modane have been achieved. The observation of one nuclear recoil candidate above 20 keV in an effective exposure of 144 kgd is interpreted in terms of limits on the cross-section of spin-independent interactions of WIMPs and nucleons. A cross-section of 1.0x10^-7 pb is excluded at 90%CL for a WIMP mass of 80 GeV/c2. This result demonstrates for the first time the very high background rejection capabilities of these simple and robust detectors in an actual WIMP search experiment.
45 - E. Armengaud 2007
We use more than two years of data from the Pierre Auger Observatory to search for anisotropies on large scales in different energy windows. We account for various systematics in the acceptance, in particular due to the array growth and weather varia tions. We present the results of analyses and consistency checks looking for patterns in the right ascension modulation of the cosmic ray distribution. No significant anisotropies of this kind are observed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا