ترغب بنشر مسار تعليمي؟ اضغط هنا

Identifying the most likely sources for high-energy neutrino emission has been one of the main topics in high-energy astrophysics ever since the first observation of high-energy neutrinos by the IceCube Neutrino Observatory. Active galactic nuclei wi th relativistic jets, also known as blazars, have been considered to be one of the main candidates because of their ability to accelerate particles to high energies. We study the connection between radio emission and IceCube neutrino events using data from the Owens Valley Radio Observatory (OVRO) and Metsahovi Radio Observatory blazar monitoring programs. We identify sources in our radio monitoring sample that are positionally consistent with IceCube high-energy neutrino events. We estimate their mean flux density and variability amplitudes around the neutrino arrival time, and compare these with values from random samples to establish the significance of our results. We find radio source associations within our samples with 15 high-energy neutrino events detected by IceCube. Nearly half of the associated sources are not detected in the $gamma$-ray energies, but their radio variability properties and Doppler boosting factors are similar to the $gamma$-ray detected objects in our sample, meaning that they could still be potential neutrino emitters. We find that the number of strongly flaring objects in our statistically complete OVRO samples is unlikely to be a random coincidence (at $2sigma$ level). Based on our results, we conclude that although it is clear that not all neutrino events are associated with strong radio flaring blazars, observations of large-amplitude radio flares in a blazar at the same time as a neutrino event are unlikely to be a random coincidence.
We present 10 years of R-band monitoring data of 31 northern blazars which were either detected at very high energy (VHE) gamma rays or listed as potential VHE gamma-ray emitters. The data comprise 11820 photometric data points in the R-band obtained in 2002-2012. We analyze the light curves by determining their power spectral density (PSD) slopes assuming a power-law dependence with a single slope $beta$ and a Gaussian probability density function (PDF). We use the multiple fragments variance function (MFVF) combined with a forward-casting approach and likelihood analysis to determine the slopes and perform extensive simulations to estimate the uncertainties of the derived slopes. We also look for periodic variations via Fourier analysis and quantify the false alarm probability through a large number of simulations. Comparing the obtained PSD slopes to values in the literature, we find the slopes in the radio band to be steeper than those in the optical and gamma rays. Our periodicity search yielded one target, Mrk 421, with a significant (p<5%) period. Finding one significant period among 31 targets is consistent with the expected false alarm rate, but the period found in Mrk~421 is very strong and deserves further consideration}.
We present ~2000 polarimetric and ~3000 photometric observations of 15 gamma-ray bright blazars over a period of 936 days (11/10/2008 - 26/10/2012) using data from the Tuorla blazar monitoring program (KVA DIPOL) and Liverpool Telescope (LT) RINGO2 p olarimeters (supplemented with data from SkyCamZ (LT) and Fermi-LAT gamma-ray data). In 11 out of 15 sources we identify a total of 19 electric vector position angle (EVPA) rotations and 95 flaring episodes. We group the sources into subclasses based on their broadband spectral characteristics and compare their observed optical and gamma-ray properties. We find that (1) the optical magnitude and gamma-ray flux are positively correlated, (2) EVPA rotations can occur in any blazar subclass, 4 sources show rotations that go in one direction and immediately rotate back, (3) we see no difference in the gamma-ray flaring rates in the sample; flares can occur during and outside of rotations with no preference for this behaviour, (4) the average degree of polarisation (DoP), optical magnitude and gamma-ray flux are lower during an EVPA rotation compared with during non-rotation and the distribution of the DoP during EVPA rotations is not drawn from the same parent sample as the distribution outside rotations, (5) the number of observed flaring events and optical polarisation rotations are correlated, however we find no strong evidence for a temporal association between individual flares and rotations and (6) the maximum observed DoP increases from ~10% to ~30% to ~40% for subclasses with synchrotron peaks at high, intermediate and low frequencies respectively.
Blazars, active galactic nuclei whose jet axis is pointed towards the observer, constitute the most numerous class of extragalactic very high energy (VHE, E > 100, GeV) gamma-ray emitters. The MAGIC experiment, a system of two Imaging Atmospheric Che renkov Telescopes located in the Canary Island of La Palma (Northern hemisphere), with an energy threshold of 50 GeV, is a well suited experiment for observations of such objects. Here we present the discovery of the BL Lac 1ES 1727+502 (z = 0.055) as VHE source. This object was identified as a promising TeV candidate based on archival data and the observation that lead to this detection was not triggered by any high state alert in other wavebands. The MAGIC observations are complemented by other observations are lower frequencies: optical data from the KVA telescope, UV, optical and X-ray archival data taken with the instruments on board the Swift satellite and high energy (HE, 300 MeV < E < 100 GeV) data from the textit{Fermi}-LAT instrument. We studied the spectral energy distribution of 1ES 1727+502 and interpreted it with a one-zone synchrotron self-Compton model with parameters that are typical for this class of sources.
We present results of multi-wavelength (MWL) observations of the high-frequency-peaked BL Lacertae (HBL) object 1ES 0806+524 (z=0.138). Triggered by a high optical state, very high energy (VHE; E > 100 GeV) observations were carried out with the MAGI C stereoscopic system from January to March 2011. During the observations a relatively short VHE gamma-ray flare was detected that lasted no longer than one night. To complement the VHE observations, simultaneous MWL data were collected in high energy gamma-rays using the textit{Fermi Large Area Telescope (HE, 300 MeV - 100 GeV), in the X-ray and UV band with the textit{Swift} satellite, in the optical R--band through observations with the KVA telescope and in the radio band using the OVRO telescope. This constitutes the first time that such a broad band coverage has been obtained for this source. We study the source properties through the characterization of the spectral energy distribution (SED) and its evolution through two different VHE flux states. The SED can be modeled with a simple one-zone SSC model, resulting in parameters that are comparable to those obtained for other HBLs.
Among more than fifty blazars detected in very high energy (VHE, E>100GeV) gamma-rays, only three belong to the subclass of Flat Spectrum Radio Quasars (FSRQs): PKS 1510-089, PKS 1222+216 and 3C 279. The detection of FSRQs in the VHE range is challen ging, mainly because of their steep soft spectra in the GeV-TeV regime. MAGIC has observed and detected all FSRQs known to be VHE emitters up to now and found that they exhibit very different behavior. The 2010 discovery of PKS 1222+216 (z = 0.432) with the fast variability observed, challenges simple one-zone emission models and more complicated scenarios have been proposed. 3C 279 is the most distant VHE gamma-ray emitting AGN (z = 0.536), which was discovered by MAGIC in 2006 and detected again in 2007. In 2011 MAGIC observed 3C 279 two times: first during a monitoring campaign and later observations were triggered by a flare detected with Fermi-LAT. We present the MAGIC results and the multiwavelength behavior during this flaring epoch. Finally, we report the 2012 detection of PKS 1510-089 (z = 0.36), together with its simultaneous multiwavelength data from optical to gamma-rays.
MAGIC, a stereoscopic cherenkov telescope array, sensitive to gamma-rays between 50 GeV and several tens of TeV, is ideally suited to observe promising Fermi LAT sources with a hard gamma-ray spectrum. Here we discuss the discovery of very high energ y gamma-ray (VHE, E > 100 GeV) emission from the Fermi LAT sources 1FGL J2001.1+4351 and B3-2247+381 with MAGIC. 1FGL J2001.1+4351, recently identified as MG4 J200112+4352 (Bassani et al. 2010), is most likely a high peaked BL Lacertae object. The red shift of this source is still unknown, though the identification of the optical host galaxy suggests z < 0.2. MAGIC observations indicate short term variability, since the source showed a strong emission of 20% of the Crab Nebula flux above 90 GeV during the 16th of July 2010 and none of the other observation nights yielded a detection. B3-2247+381 is classified as a BL Lac object at z = 0.1187 (Veron-Cetty & Veron catalogue of known AGN). In July 2010 it showed increased optical activity in the Tuorla blazar monitoring program, which subsequently activated target of opportunity observations by MAGIC. Within 18 hours of observation time extended over 13 days between September and October 2010, a strong signal was found above an energy threshold of 150 GeV. The flux (4% of the Crab Nebula) is consistent with being constant over the entire observation campaign. We compute the light curves, model the spectral energy distributions of these new very high energy gamma-ray emitters and discuss the physical properties of the VHE gamma-ray emission region.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا