ترغب بنشر مسار تعليمي؟ اضغط هنا

The co-evolution between supermassive black holes and their environment is most directly traced by the hot atmospheres of dark matter halos. Cooling of the hot atmosphere supplies the central regions with fresh gas, igniting active galactic nuclei (A GN) with long duty cycles. Outflows from the central engine tightly couple with the surrounding gaseous medium and provide the dominant heating source preventing runaway cooling by carving cavities and driving shocks across the medium. The AGN feedback loop is a key feature of all modern galaxy evolution models. Here we review our knowledge of the AGN feedback process in the specific context of galaxy groups. Galaxy groups are uniquely suited to constrain the mechanisms governing the cooling-heating balance. Unlike in more massive halos, the energy supplied by the central AGN to the hot intragroup medium can exceed the gravitational binding energy of halo gas particles. We report on the state-of-the-art in observations of the feedback phenomenon and in theoretical models of the heating-cooling balance in galaxy groups. We also describe how our knowledge of the AGN feedback process impacts on galaxy evolution models and on large-scale baryon distributions. Finally, we discuss how new instrumentation will answer key open questions on the topic.
The on-going X-ray all-sky survey with the eROSITA instrument will yield large galaxy cluster samples, which will bring strong constraints on cosmological parameters. In particular, the survey holds great promise to investigate the tension between CM B and low-redshift measurements. The current bottleneck preventing the full exploitation of the survey data is the systematics associated with the relation between survey observable and halo mass. Numerous recent studies have shown that gas mass and core-excised X-ray luminosity exhibit very low scatter at fixed mass. We propose a new method to reconstruct these quantities from low photon count data and validate the method using extensive eROSITA-like simulations. We find that even near the detection threshold of ~50 counts the core-excised luminosity and the gas mass can be recovered with 20-30% precision, which is substantially less than the scatter of the full integrated X-ray luminosity at fixed mass. When combined with an accurate calibration of the absolute mass scale (e.g. through weak gravitational lensing), our technique reduces the systematics on cosmological parameters induced by the mass calibration.
The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) mission will measure the position and properties of about 100,000 clusters of galaxies and 3 million active galactic nuclei over the full sky. To study the statistical properties of this ongoing survey, it is key to estimate the selection function accurately. We create a set of full sky light-cones using the MultiDark and UNIT dark matter only N-body simulations. We present a novel method to predict the X-ray emission of galaxy clusters. Given a set of dark matter halo properties (mass, redshift, ellipticity, offset parameter), we construct an X-ray emissivity profile and image for each halo in the light-cone. We follow the eROSITA scanning strategy to produce a list of X-ray photons on the full sky. We predict scaling relations for the model clusters, which are in good agreement with the literature. The predicted number density of clusters as a function of flux also agrees with previous measurements. Finally, we obtain a scatter of 0.21 (0.07, 0.25) for the X-ray luminosity -- mass (temperature -- mass, luminosity -- temperature) model scaling relations. We provide catalogues with the model photons emitted by clusters and active galactic nuclei. These catalogues will aid the eROSITA end to end simulation flow analysis and in particular the source detection process and cataloguing methods.
One key ingredient in using galaxy clusters (GCs) as a precision cosmological probe in large X-ray surveys is to understand selection effects. The dependence of the X-ray emission on the square of the gas density leads to a predominant role of cool c ores in the detection of GCs. The contribution of cool cores to the X-ray luminosity does not scale with GC mass and cosmology and therefore affects the use of X-ray GCs in producing cosmological constraints. One of the main science goals of the eROSITA mission is to constrain cosmology with a wide X-ray survey. We propose an eROSITA GC detection scheme that avoids the use of X-ray GC centers in detection. We calculate theoretical expectations and characterize the performance of this scheme by simulations. Performing realistic simulations of point sources (PSs) in survey mode we search for spatial scales where the extended signal is uncontaminated by the PS flux. We derive a combination of scales and thresholds, which result in a clean extended source catalog. We design the output of the GC detection which enables calibrating the core-excised luminosity using external mass measurements. We provide a way to incorporate the results of this calibration in the production of final core-excised luminosity. Similarly to other GC detection pipelines, we sample the flux - core radius detection space of our method and find many similarities with the pipeline used in the 400d survey. Both detection methods require large statistics on compact GCs, in order to reduce the contamination from PSs. The benefit of our pipeline consists in the sensitivity to the outer GC shapes, which are characterized by large core sizes with little GC to GC variation at a fixed total mass. GC detection through cluster outskirts improves the GC characterization using eROSITA survey data and is expected to yield well characterized GC catalogs having simple selection functions.
We present results from simultaneous modeling of high angular resolution GBT/MUSTANG-2 90 GHz Sunyaev-Zeldovich effect (SZE) measurements and XMM-XXL X-ray images of three rich galaxy clusters selected from the HSC-SSP Survey. The combination of high angular resolution SZE and X-ray imaging enables a spatially resolved multi-component analysis, which is crucial to understand complex distributions of cluster gas properties. The targeted clusters have similar optical richnesses and redshifts, but exhibit different dynamical states in their member galaxy distributions: a single-peaked cluster, a double-peaked cluster, and a cluster belonging to a supercluster. A large-scale residual pattern in both regular Compton-parameter $y$ and X-ray surface brightness distributions is found in the single-peaked cluster, indicating a sloshing mode. The double-peaked cluster shows an X-ray remnant cool core between two SZE peaks associated with galaxy concentrations. The temperatures of the two peaks reach $sim20-30$ keV in contrast to the cool core component of $sim2$ keV, indicating a violent merger. The main SZE signal for the supercluster is elongated along a direction perpendicular to the major axis of the X-ray core, suggesting a minor merger before core passage. The $S_X$ and $y$ distributions are thus perturbed at some level, regardless of the optical properties. We find that the integrated Compton $y$ parameter and the temperature for the major merger are boosted from those expected by the weak-lensing mass and those for the other two clusters show no significant deviations, which is consistent with predictions of numerical simulations.
Context. Scaling relations between cluster properties embody the formation and evolution of cosmic structure. Intrinsic scatters and correlations between X-ray properties are determined from merger history, baryonic processes, and dynamical state. Aims. We look for an unbiased measurement of the scatter covariance matrix between the three main X-ray observable quantities attainable in large X-ray surveys -- temperature, luminosity, and gas mass. This also gives us the cluster property with the lowest conditional intrinsic scatter at fixed mass. Methods. Intrinsic scatters and correlations can be measured under the assumption that the observable properties of the intra-cluster medium hosted in clusters are log-normally distributed around power-law scaling relations. The proposed method is self-consistent, based on minimal assumptions, and requires neither the external calibration by weak lensing, dynamical, or hydrostatic masses nor the knowledge of the mass completeness. Results. We analyzed the 100 brightest clusters detected in the XXL Survey and their X-ray properties measured within a fixed radius of 300 kpc. The gas mass is the less scattered proxy (~8%). The temperature (~20%) is intrinsically less scattered than the luminosity (~30%) but it is measured with a larger observational uncertainty. We found some evidence that gas mass, temperature and luminosity are positively correlated. Time-evolutions are in agreement with the self-similar scenario, but the luminosity-temperature and the gas mass-temperature relations are steeper. Conclusions. Positive correlations between X-ray properties can be determined by the dynamical state and the merger history of the halos. The slopes of the scaling relations are affected by radiative processes.
In this work, we investigate the relation between the radially-resolved thermodynamic quantities of the intracluster medium in the X-COP cluster sample, aiming to assess the stratification properties of the ICM. We model the relations between radius, gas temperature, density and pressure using a combination of power-laws, also evaluating the intrinsic scatter in these relations. We show that the gas pressure is remarkably well correlated to the density, with very small scatter. Also, the temperature correlates with gas density with similar scatter. The slopes of these relations have values that show a clear transition from the inner cluster regions to the outskirts. This transition occurs at the radius $r_t = 0.19(pm0.04)R_{500}$ and electron density $n_t = (1.91pm0.21)cdot10^{-3} cm^{-3} E^2 (z)$. We find that above 0.2 $R_{500}$ the radial thermodynamic profiles are accurately reproduced by a well defined and physically motivated framework, where the dark matter follows the NFW potential and the gas is represented by a polytropic equation of state. By modeling the gas temperature dependence upon both the gas density and radius, we propose a new method to reconstruct the hydrostatic mass profile based only on the quite inexpensive measurement of the gas density profile.
Astrophysicists are interested in recovering the 3D gas emissivity of a galaxy cluster from a 2D image taken by a telescope. A blurring phenomenon and presence of point sources make this inverse problem even harder to solve. The current state-of-the- art technique is two step: first identify the location of potential point sources, then mask these locations and deproject the data. We instead model the data as a Poisson generalized linear model (involving blurring, Abel and wavelets operators) regularized by two lasso penalties to induce sparse wavelet representation and sparse point sources. The amount of sparsity is controlled by two quantile universal thresholds. As a result, our method outperforms the existing one.
Radio relics are Mpc-scale diffuse radio sources at the peripheries of galaxy clusters which are thought to trace outgoing merger shocks. We present XMM-Newton and Suzaku observations of the galaxy cluster Abell 2744 (z=0.306), which reveal the prese nce of a shock front 1.5 Mpc East of the cluster core. The surface-brightness jump coincides with the position of a known radio relic. Although the surface-brightness jump indicates a weak shock with a Mach number $mathcal{M}=1.7_{-0.3}^{+0.5}$, the plasma in the post-shock region has been heated to a very high temperature ($sim13$ keV) by the passage of the shock wave. The low acceleration efficiency expected from such a weak shock suggests that mildly relativistic electrons have been re-accelerated by the passage of the shock front.
Observations of the cosmic microwave background indicate that baryons account for 5% of the Universes total energy content. In the local Universe, the census of all observed baryons falls short of this estimate by a factor of two. Cosmological simula tions indicate that the missing baryons might not have condensed into virialized haloes, but reside throughout the filaments of the cosmic web (where matter density is larger than average) as a low-density plasma at temperatures of $10^5-10^7$ kelvin, known as the warm-hot intergalactic medium. There have been previous claims of the detection of warm baryons along the line of sight to distant blazars and of hot gas between interacting clusters. These observations were, however, unable to trace the large-scale filamentary structure, or to estimate the total amount of warm baryons in a representative volume of the Universe. Here we report X-ray observations of filamentary structures of gas at $10^7$ kelvin associated with the galaxy cluster Abell 2744. Previous observations of this cluster were unable to resolve and remove coincidental X-ray point sources. After subtracting these, we reveal hot gas structures that are coherent over scales of 8 mergaparsecs. The filaments coincide with over-densities of galaxies and dark matter, with 5-10% of their mass in baryonic gas. This gas has been heated up by the clusters gravitational pull and is now feeding its core. Our findings strengthen evidence for a picture of the Universe in which a large fraction of the missing baryons reside in the filaments of the cosmic web.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا