ترغب بنشر مسار تعليمي؟ اضغط هنا

Full-sky photon simulation of clusters and active galactic nuclei in the soft X-rays for eROSITA

57   0   0.0 ( 0 )
 نشر من قبل Johan Comparat
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The eROSITA X-ray telescope on board the Spectrum-Roentgen-Gamma (SRG) mission will measure the position and properties of about 100,000 clusters of galaxies and 3 million active galactic nuclei over the full sky. To study the statistical properties of this ongoing survey, it is key to estimate the selection function accurately. We create a set of full sky light-cones using the MultiDark and UNIT dark matter only N-body simulations. We present a novel method to predict the X-ray emission of galaxy clusters. Given a set of dark matter halo properties (mass, redshift, ellipticity, offset parameter), we construct an X-ray emissivity profile and image for each halo in the light-cone. We follow the eROSITA scanning strategy to produce a list of X-ray photons on the full sky. We predict scaling relations for the model clusters, which are in good agreement with the literature. The predicted number density of clusters as a function of flux also agrees with previous measurements. Finally, we obtain a scatter of 0.21 (0.07, 0.25) for the X-ray luminosity -- mass (temperature -- mass, luminosity -- temperature) model scaling relations. We provide catalogues with the model photons emitted by clusters and active galactic nuclei. These catalogues will aid the eROSITA end to end simulation flow analysis and in particular the source detection process and cataloguing methods.

قيم البحث

اقرأ أيضاً

With the launch of eROSITA (extended Roentgen Survey with an Imaging Telescope Array), successfully occurred on 2019 July 13, we are facing the challenge of computing reliable photometric redshifts for 3 million of active galactic nuclei (AGNs) over the entire sky, having available only patchy and inhomogeneous ancillary data. While we have a good understanding of the photo-z quality obtainable for AGN using spectral energy distribution (SED)-fitting technique, we tested the capability of machine learning (ML), usually reliable in computing photo-z for QSO in wide and shallow areas with rich spectroscopic samples. Using MLPQNA as example of ML, we computed photo-z for the X-ray-selected sources in Stripe 82X, using the publicly available photometric and spectroscopic catalogues. Stripe 82X is at least as deep as eROSITA will be and wide enough to include also rare and bright AGNs. In addition, the availability of ancillary data mimics what can be available in the whole sky. We found that when optical, and near- and mid-infrared data are available, ML and SED fitting perform comparably well in terms of overall accuracy, realistic redshift probability density functions, and fraction of outliers, although they are not the same for the two methods. The results could further improve if the photometry available is accurate and including morphological information. Assuming that we can gather sufficient spectroscopy to build a representative training sample, with the current photometry coverage we can obtain reliable photo-z for a large fraction of sources in the Southern hemisphere well before the spectroscopic follow-up, thus timely enabling the eROSITA science return. The photo-z catalogue is released here.
We present a measurement of the fraction of cluster galaxies hosting X-ray bright Active Galactic Nuclei (AGN) as a function of clustercentric distance scaled in units of $r_{500}$. Our analysis employs high quality Chandra X-ray and Subaru optical i maging for 42 massive X-ray selected galaxy cluster fields spanning the redshift range of $0.2 < z < 0.7$. In total, our study involves 176 AGN with bright ($R <23$) optical counterparts above a $0.5-8.0$ keV flux limit of $10^{-14} rm{erg} rm{cm}^{-2} rm{s}^{-1}$. When excluding central dominant galaxies from the calculation, we measure a cluster-galaxy AGN fraction in the central regions of the clusters that is $sim 3 $ times lower that the field value. This fraction increases with clustercentric distance before becoming consistent with the field at $sim 2.5 r_{500}$. Our data exhibit similar radial trends to those observed for star formation and optically selected AGN in cluster member galaxies, both of which are also suppressed near cluster centers to a comparable extent. These results strongly support the idea that X-ray AGN activity and strong star formation are linked through their common dependence on available reservoirs of cold gas.
We propose the rest-frame 2-10 keV photon index, ga, acting as an indicator of the bolometric correction, lb/$L_{rm 2-10keV}$ (where lb~ is the bolometric luminosity and $L_{rm 2-10keV}$ is the rest-frame 2-10 keV luminosity), in radio-quiet active g alactic nuclei (AGNs). Correlations between ga~ and both bolometric correction and Eddington ratio are presented, based on simultaneous X-ray, UV, and optical observations of reverberation -mapped AGNs. These correlations can be compared with those for high-redshift AGNs to check for any evolutionary effect. Assuming no evolutionary effect in AGNs spectral properties, together with the independent estimates of $L_{rm 2-10keV}$, the bolometric correction, Eddington ratio, and black hole (BH) mass can all be estimated from these correlations for high-redshift AGNs, with the mean uncertainty of a factor of 2-3. If there are independent estimates of BH masses, ga~ for high-redshift AGNs can be used to determine their true lb~ and $L_{rm 2-10keV}$, and in conjunction with the redshift, can be potentially used to place constraints on cosmology by comparison with the rest-frame 2-10 keV flux. We find that the true $L_{rm 2-10keV}$ estimated from ga~ for the brightest Type I AGNs with $z<1$ in the Lockman Hole is generally in agreement with the observed $L_{rm 2-10keV}$. However, there are still many uncertainties, such as the accurate determination of the intrinsic ga~ for distant AGNs and the large uncertainty in the luminosities obtained, which call for significant further study before ``AGN cosmology can be considered a viable technique.
The observed relation between the X-ray radiation from AGNs, originating in the corona, and the optical/UV radiation from the disk is usually described by the anticorrelation between the UV to X-ray slope alpha_ox and the UV luminosity. Many factors can affect this relation, including: enhanced X-ray emission associated with the jets of radio-loud AGNs; X-ray absorption associated with the UV Broad Absorption Line (BAL) outflows; other X-ray absorption not associated with BALs; intrinsic X-ray weakness; UV and X-ray variability, and non-simultaneity of UV and X-ray observations. The separation of these effects provides information about the intrinsic alpha_ox-L_UV relation and its dispersion, constraining models of disk-corona coupling. We extract simultaneous data from the second XMM-Newton serendipitous source catalogue and the XMM-Newton Optical Monitor Serendipitous UV Source Survey Catalog, and derive the single-epoch alpha_ox indices. We use ensemble structure functions to analyse multi-epoch data. We confirm the anticorrelation of alpha_ox with L_UV, and do not find any evidence of a dependence of alpha_ox on z. The dispersion in our simultaneous data (0.12) is not significantly smaller than in previous non-simultaneous studies, suggesting that artificial alpha_ox variability introduced by non-simultaneity is not the main cause of dispersion. Intrinsic alpha_ox variability, i.e., the true variability of the X-ray to optical ratio, is instead important, and accounts for ~30% of the total variance, or more. Inter-source dispersion, due to intrinsic differences in the average alpha_ox values from source to source, is also important. The dispersion introduced by variability is mostly caused by the long timescale variations, which are expected to be driven by the optical variations.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا