ترغب بنشر مسار تعليمي؟ اضغط هنا

A shock front at the radio relic of Abell 2744

134   0   0.0 ( 0 )
 نشر من قبل Dominique Eckert Dr.
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Radio relics are Mpc-scale diffuse radio sources at the peripheries of galaxy clusters which are thought to trace outgoing merger shocks. We present XMM-Newton and Suzaku observations of the galaxy cluster Abell 2744 (z=0.306), which reveal the presence of a shock front 1.5 Mpc East of the cluster core. The surface-brightness jump coincides with the position of a known radio relic. Although the surface-brightness jump indicates a weak shock with a Mach number $mathcal{M}=1.7_{-0.3}^{+0.5}$, the plasma in the post-shock region has been heated to a very high temperature ($sim13$ keV) by the passage of the shock wave. The low acceleration efficiency expected from such a weak shock suggests that mildly relativistic electrons have been re-accelerated by the passage of the shock front.

قيم البحث

اقرأ أيضاً

Ultra-low frequency observations (<100 MHz) are particularly challenging because they are usually performed in a low signal-to-noise ratio regime due to the high sky temperature and because of ionospheric disturbances whose effects are inversely prop ortional to the observing frequency. Nonetheless, these observations are crucial to study the emission from low-energy populations of cosmic rays. We aim to obtain the first thermal-noise limited (~ 1.5 mJy/beam) deep continuum radio map using the LOFAR Low Band Antenna (LBA) system. Our demonstration observation targeted the galaxy cluster RX J0603.3+4214 (the Toothbrush cluster). We used the resulting ultra-low frequency (58 MHz) image to study cosmic-ray acceleration and evolution in the post shock region, as well as their relation with the presence of a radio halo. We describe the data reduction we have used to calibrate LOFAR LBA observations. The resulting image is combined with observations at higher frequencies (LOFAR 150 MHz and VLA 1500 MHz) to extract spectral information. We obtained the first thermal-noise limited image from an observation carried out with the LOFAR LBA system using all Dutch stations at a central frequency of 58 MHz. With 8 hours of data, we reached an rms noise of 1.3 mJy/beam at a resolution of 18 x 11. The procedure we have developed is an important step forward towards routine high-fidelity imaging with the LOFAR LBA. The analysis of the radio spectra shows that the radio relic extends to distances of 800 kpc downstream from the shock front, larger than what allowed by electron cooling time. Furthermore, the shock wave started accelerating electrons already at a projected distance of <300 kpc from the crossing point of the two clusters. These results can be explained if electrons are reaccelerated downstream by background turbulence possibly combined with projection effects.
We present LOFAR $120-168$ MHz images of the merging galaxy cluster Abell 1240 that hosts double radio relics. In combination with the GMRT $595-629$ MHz and VLA $2-4$ GHz data, we characterised the spectral and polarimetric properties of the radio e mission. The spectral indices for the relics steepen from their outer edges towards the cluster centre and the electric field vectors are approximately perpendicular to the major axes of the relics. The results are consistent with the picture that these relics trace large-scale shocks propagating outwards during the merger. Assuming diffusive shock acceleration (DSA), we obtain shock Mach numbers of $mathcal{M}=2.4$ and $2.3$ for the northern and southern shocks, respectively. For $mathcal{M}lesssim3$ shocks, a pre-existing population of mildly relativistic electrons is required to explain the brightness of the relics due to the high ($>10$ per cent) particle acceleration efficiency required. However, for $mathcal{M}gtrsim4$ shocks the required efficiency is $gtrsim1%$ and $gtrsim0.5%$, respectively, which is low enough for shock acceleration directly from the thermal pool. We used the fractional polarization to constrain the viewing angle to $geqslant(53pm3)^circ$ and $geqslant(39pm5)^circ$ for the northern and southern shocks, respectively. We found no evidence for diffuse emission in the cluster central region. If the halo spans the entire region between the relics ($sim1.8,text{Mpc}$) our upper limit on the power is $P_text{1.4 GHz}=(1.4pm0.6)times10^{23},text{W}text{Hz}^{-1}$ which is approximately equal to the anticipated flux from a cluster of this mass. However, if the halo is smaller than this, our constraints on the power imply that the halo is underluminous.
We present an X-ray and radio study of the famous `El Gordo, a massive and distant ($z=0.87$) galaxy cluster. In the deep (340 ks) Chandra observation, the cluster appears with an elongated and cometary morphology, a sign of its current merging state . The GMRT radio observations at 610 MHz reveal the presence of a radio halo which remarkably overlaps the X-ray cluster emission and connects a couple of radio relics. We detect a strong shock ($mathcal{M}gtrsim3$) in the NW periphery of the cluster, co-spatially located with the radio relic. This is the most distant ($z=0.87$) and one of the strongest shock detected in a galaxy cluster. This work supports the relic-shock connection and allows to investigate the origin of these radio sources in a uncommon regime of $mathcal{M}gtrsim3$. For this particular case we found that shock acceleration from the thermal pool is still a viable possibility.
The origin of radio relics is usually explained via diffusive shock acceleration (DSA) or re-acceleration of electrons at/from merger shocks in galaxy clusters. The case of acceleration is challenged by the low predicted efficiency of low-Mach number merger shocks, unable to explain the power observed in most radio relics. In this Letter we present the discovery of a new giant radio relic around the galaxy cluster Abell 2249 ($z=0.0838$) using LOFAR. It is special since it has the lowest surface brightness of all known radio relics. We study its radio and X-ray properties combinig LOFAR data with uGMRT, JVLA and XMM. This object has a total power of $L_{1.4rm GHz}=4.1pm 0.8 times 10^{23}$ W Hz$^{-1}$ and integrated spectral index $alpha = 1.15pm 0.23$. We infer for this radio relic a lower bound on the magnetisation of $Bgeq 0.4, mu$G, a shock Mach number of $mathcal{M}approx 3.79$, and a low acceleration efficiency consistent with DSA. This result suggests that a missing population of relics may become visible thanks to the unprecedented sensitivity of the new generation of radio telescopes.
The remnant radio galaxies in galaxy clusters are important sources of seed relativistic electron population in the intra-cluster medium (ICM). Their occurrence and spectral properties are poorly studied. In this work we present a broadband study of the radio relic in the galaxy cluster Abell 4038 using the Upgraded Giant Metrewave Radio Telescope (uGMRT). We present the uGMRT images in the bands 300 - 500 MHz and 1050 - 1450 MHz having rms noise $70,mu$Jy beam$^{-1}$ and $30,mu$Jy beam$^{-1}$, respectively, that are the deepest images of this field so far. A spectral analysis of the relic over 300 - 1450 MHz using images in sub-bands scaled to have constant fractional bandwidths to achieve a closely matched uv-coverage was carried out. The 100 kpc extent of the relic is divided into Loop, Arc, Bridge and North-end. The Loop has a steep spectral index of $alpha=2.3pm0.2$ ($S_{ u}propto u^{-alpha}$). The North-end has ultra-steep spectra in the range $2.4 - 3.7$. The Arc is found to skirt a curved region seen in the emph{Chandra} X-ray surface brightness image and the highest spectral curvature in it reaches $1.6pm0.3$. We interpret the morphology and spectral properties of the relic in the scenario of an adiabatically compressed cocoon from the past activity of the Brightest Cluster Galaxy in the cluster. A comparison of the properties of the A4038 relic with a sample of 10 such relics is discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا