ترغب بنشر مسار تعليمي؟ اضغط هنا

We analyse recently measured nonlinear photoemission spectra from Ag surfaces that reveal resonances whose energies do not scale with the applied photon energy but stay pinned to multiples of bulk plasmon energy $hbaromega_p$ above the Fermi level. T o elucidate these unexpected and peculiar features we investigate the spectra of plasmons generated in a solid by the optically pumped electronic polarization and their effect on photoemission. By combining quadratic response formalism for calculations of photoemission yield, a nonperturbative approach to inelastic electron scattering, and first-principles calculations for the electronic structure, we demonstrate the dependence of probability amplitude for single- and multiplasmon excitations on the basic parameters characterizing the photon pulse and the system. The resulting multiexcitation spectrum evolves towards a truncated plasmonic coherent state. Analogous concept is extrapolated to interpret plasmon generation by multiphoton excited electronic polarization. Based on this we elaborate a scenario that the thus created real plasmons act as supplementary frequency-locked pump field for non-Einsteinian plasmonically assisted channels of photoemission from metals. The established paradigm enables assignment and assessment of the observed linear $hbaromega_p$- and nonlinear $2hbaromega_p$-electron yields from Ag. Such effects may be exploited for selective filtering of optical energy conversion in electronic systems.
Hyperbolic materials are receiving significant attention due to their ability to support electromagnetic fields with arbitrarily high momenta and, hence, to achieve very strong light confinement. Here, based on first-principles calculations and many- body perturbation theory, we explore the characteristic of two-dimensional plasmon modes and its hyperbolic properties for two phases of single layer boron hosting tilted Dirac cone, namely, the $hr$-$sB$ and $8Pmmn$ borophene. In-plane anisotropy in borophene is manifested in the structural, electronic, vibrational and optical properties. We find two hyperbolic regimes for both phases of borophene, where the high-energy one is located in the visible range. The $hr$-$sB$ borophene is characterised with an intrinsic high carrier density and it supports strong hyperbolic plasmon modes in the visible part of the spectrum. The $8Pmmn$ borophene, on the other hand, resembles the prototypical Dirac material graphene, and upon carrier doping acquires anisotropic Dirac plasmons in the mid-infrared. We have also investigated the impact of the electron-phonon coupling and Landau damping on these hyperbolic plasmon modes. Our results show that borophene, having high anisotropy, intrinsic high carrier concentration, low-loss hyperbolic Dirac plasmon modes, and high confinement can represent a promising candidate for low-loss broad band surface plasmon polariton devices.
Natural hyperbolic two-dimensional systems are a fascinating class of materials that could open alternative pathways to the manipulation of plasmon propagation and light-matter interactions. Here, we present a comprehensive study of the optical respo nse in T$_d,$-WTe$_2$ by means of density-functional and many-body perturbation theories. We show how monolayer WTe$_2$ with in-plane anisotropy sustains hyperbolic plasmon polaritons, which can be tuned via chemical doping and strain. The latter is able to extend the hyperbolic regime toward the near infrared with low losses. Moreover, with a moderate strain, WTe$_2$ can even be switched between elliptic and hyperbolic regimes. In addition, plasmons in WTe$_2$ are characterized by low losses owing to electron-phonon scattering, which is responsible for the temperature dependence of the plasmon line width. Interestingly, the temperature can also be utilized to tune the in-plane anisotropy of the WTe$_2$ optical response.
143 - Dino Novko 2020
Exploring low-loss two-dimensional plasmon modes is considered central for achieving light manipulation at the nanoscale and applications in plasmonic science and technology. In this context, pump-probe spectroscopy is a powerful tool for investigati ng these collective modes and the corresponding energy transfer processes. Here, I present a first-principles study on non-equilibrium Dirac plasmon in graphene, wherein damping channels under ultrafast conditions are still not fully explored. The laser-induced blueshift of plasmon energy is explained in terms of thermal increase of the electron-hole pair concentration in the intraband channel. Interestingly, while damping pathways of the equilibrium graphene plasmon are entirely ruled by scatterings with acoustic phonons, the photoinduced plasmon predominantly transfers its energy to the strongly coupled hot optical phonons, which explains the experimentally-observed tenfold increase of the plasmon linewidth. The present study paves the way for an in-depth theoretical comprehension of plasmon temporal dynamics in novel two-dimensional systems and heterostructures.
The effects of spin-orbit (SOC) and electron-phonon coupling on the collective excitation of doped monolayer Sb$_2$ are investigated using density functional and many-body perturbation theories. The spin-orbit coupling is exclusively important for th e monolayer Sb$_2$ and it leads to the reconstruction of the electronic band structure. In particular, plasmon modes of monolayer Sb$_2$ are quite sensitive to the SOC and are characterized by very low damping rates owing to small electron-phonon scatterings. Our results show plasmons in antimonene are significantly less damped compared to monolayer graphene when plasmon energies are $hbar omega> 0.2$ eV due to smaller plasmon-phonon coupling in the former material.
45 - Dino Novko , Marko Kralj 2019
Many recent experiments investigated potential and attractive means of modifying many-body interactions in two-dimensional materials through time-resolved spectroscopy techniques. However, the role of ultrafast phonon-assisted processes in two-dimens ional systems is rarely discussed in depth. Here, we investigate the role of electron-phonon interaction in the transient optical absorption of graphene by means of first-principles methods. It is shown at equilibrium that the phonon-assisted transitions renormalize significantly the electronic structure. As a result, absorption peak around the Van Hove singularity broadens and redshifts by around 100,meV. In addition, temperature increase and chemical doping are shown to notably enhance these phonon-assisted features. In the photoinduced transient response we obtain spectral changes in close agreement with the experiments, and we associate them to the strong renormalization of occupied and unoccupied $pi$ bands, which predominantly comes from the coupling with the zone-center $E_{2g}$ optical phonon. Our estimation of the Coulomb interaction effects shows that the phonon-assisted processes can have a dominant role even in the subpicosecond regime.
370 - Fabio Caruso , Dino Novko , 2019
Time- and angle-resolved photoemission spectroscopy (tr-ARPES) constitutes a powerful tool to inspect the dynamics and thermalization of hot carriers. The identification of the processes that drive the dynamics, however, is challenging even for the s implest systems owing to the coexistence of several relaxation mechanisms. Here, we devise a Greens function formalism for predicting the tr-ARPES spectral function and establish the origin of carrier thermalization entirely from first principles. The predictive power of this approach is demonstrated by an excellent agreement with experiments for graphene over time scales ranging from a few tens of femtoseconds up to several picoseconds. Our work provides compelling evidence of a non-equilibrium dynamics dominated by the establishment of a hot-phonon regime.
192 - Dino Novko 2019
The breakdown of the adiabatic Born-Oppenheimer approximation is striking dynamical phenomenon, however, it occurs only in a handful of layered materials. Here, I show that adiabaticity breaks down in doped single-layer transition metal dichalcogenid es in a quite intriguing manner. Namely, significant nonadiabatic coupling, which acts on frequencies of the Raman-active modes, is prompted by a Lifshitz transition due to depopulation and population of multiple valence and conduction valleys, respectively. The outset of the latter event is shown to be dictated by the interplay of highly non-local electron-electron interaction and spin-orbit coupling. In addition, intense electron-hole pair scatterings due to electron-phonon coupling are inducing phonon linewidth modifications as a function of doping. Comprehending these intricate dynamical effects turns out to be a key for mastering characterization of electron doping in two-dimensional nano-devices by means of Raman spectroscopy.
302 - Dino Novko 2018
The unusual Raman spectrum of MgB$_2$ and its formidable temperature dependence are successfully reproduced by means of a parameter-free emph{ab initio} nonadiabatic theory that accounts for the electron-hole pair scattering mechanisms with the syste m phonons. This example turns out to be a prototypical case where a strong nonadiabatic renormalization of the phonon frequency is partially washed out by the aforementioned scattering events, bringing along a characteristic temperature dependence. Both electron-hole pair lifetime and energy renormalization effects due to dynamical electron-phonon coupling turn out to play a crucial role. This theory could aid in comprehending other Raman spectra characterized with unconventionally strong electron-phonon interaction.
We investigate the effects of crystal lattice vibrations on the dispersion of plasmons. The loss function of the homogeneous electron gas (HEG) in two and three dimensions is evaluated numerically in presence of electronic coupling to an optical phon on mode. Our calculations are based on many-body perturbation theory for the dielectric function as formulated by the Hedin-Baym equations in the Fan-Migdal approximation. The coupling to phonons broadens the spectral signatures of plasmons in the electron-energy loss spectrum (EELS) and it induces the decay of plasmons on timescales shorter than 1 ps. Our results further reveal the formation of a kink in the plasmon dispersion of the 2D HEG, which marks the onset of plasmon-phonon scattering. Overall, these features constitute a fingerprint of plasmon-phonon coupling in the EELS of simple metals. It is shown that these effects may be accounted for by resorting to a simplified treatment of the electron-phonon interaction which is amenable to first-principles calculations.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا